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ABSTRACT 
The Metrics for Human-Robot Interaction 2008 workshop 
at the 3rd ACM/IEEE International Conference on 
Human-Robot Interaction was initiated and organized to 
further discussion and community progress towards 
metrics for human-robot interaction (HRI). This report 
contains the papers presented at the workshop, background 
information on the workshop itself, and future directions 
underway within the community. 

Categories and Subject Descriptors 
I.2.9 [Artificial Intelligence]: Robotics – operator 
interfaces; H.5.2 [INFORMATION INTERFACES AND 
PRESENTATION]: User Interfaces – 
Evaluation/methodology; J.4 [Computer Applications]: 
Social and Behavioral Sciences – Psychology. 

General Terms 
Measurement, Experimentation, Human Factors. 

Keywords 
Human-robot interaction, evaluation, metrics. 

1. OVERVIEW 
The evaluation of interactions between robots and 

humans, different types of interactions, and individual 
robot and human behaviors require adequate metrics and 
guidelines. These metrics should take into account a 
variety of factors, ranging from objective performance to 
social interaction. These metrics can code behaviors, ways 
of interaction, social and psychological aspects, and 
technical characteristics or objective measures (i.e. success 
rates, interaction time, error rates, etc.). There are metrics 
that can be acquired using objective measuring tools; 
others depend on the personal interpretation by the staff 
conducting and analysing experiments. When human 
beings are present, metrics for social human-robot 
interaction are of utmost interest in order to achieve 
robotic systems that can be intuitively handled by people 
without causing frustration and despair.  

The following key questions were cited as topics of 
interest during the call for papers:  

1. Which guidelines should be followed for careful 
experimentation in HRI?  

2. Are there objective metrics applicable to HRI?  
3. Are there social metrics applicable to HRI?  
4. What is the relevance of subjective criteria for 

evaluation?  
5. Can subjectively categorized criteria be used to form 

objective metrics for social HRI?  

6. How can benchmarks (standardized tasks) be used to 
evaluate human-robot interactions? 

2. WORKSHOP GOALS 
The goals of the workshop was to propose guidelines 

for the analysis of human-robot experiments and forward a 
handbook of metrics that would be acceptable to the HRI 
community and allow researchers both to evaluate their 
own work and to better assess the progress of others. To 
achieve these goals the intended workshop format 
combined information about different metrics and 
evaluation methods given in submitted and invited talks, 
and moderated group discussions. 

3. FUTURE DIRECTIONS 
3.1 Workshop publications 

Besides proceedings in this printed report, all 
presentation materials will be available on the workshop 
webpage (http://www.hri-metrics.org/metrics08). The aim 
of the workshop is to come up with a set of guidelines for 
experimental evaluation and a handbook of different 
metrics. It is intended to publish the results as well as 
selected papers in a special issue of an international 
journal. 

3.2 Further community interaction 
Under funding from the U. S. National Science 

Foundation  (CBET-0742350), the website used for this 
workshop’s call for papers (http://www.hri-metrics.org) 
will soon host a collaborative infrastructure for continued 
collaboration and discussion. The website will support 
evaluation documentation, data collection, data sharing, 
and cross-study comparisons. 

This funding is also supporting integration of native 
data contribution to this community website in USARSim, 
an existing HRI simulation research tool 
(http://usarsim.sourceforge.net). 
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printing of this report. 
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ABSTRACT
When assessing interactions between robots and persons ex-
isting metrics do mainly take into account aspects that are
easy to measure like performance metrics; the human ele-
ment is left out although it plays a central role in human-
robot interaction. Measuring and quantifying human behav-
ior as well as subjective impressions is rather complicated,
may take a lot of time and ties a lot of labor. Means for quan-
tifying human behavior usually cannot be automated; the
analysis of video recordings, interviews and questionnaires
requires many people who use their subjective judgment. By
having several persons code or analyze the same data, sub-
jective votes can be reduced. In this paper we present steps
to build a framework of metrics for the evaluation of human-
robot interaction focusing on communication and movement
analysis. Besides using metrics to asses technical merits we
present how the cooperation between engineers, computer
scientists, and sociologists helps to code and quantify hu-
man behavior. Sociologists focus on interaction processes
and structures like roles, communication rules, expectations,
etc. Cognitive processes of the actors themselves (the inter-
acting persons or robots) are not analyzed by sociologists;
for this purpose psychologists are needed.

Categories and Subject Descriptors
I.2.9 [Artificial Intelligence]: Robotics

General Terms
Evaluation metrics, Motion analysis, Language Processing

∗Supported by DFG.

1. INTRODUCTION
Today, robots can be found in more and more environments
of typical human everyday life i.e. in hospitals, hotels, mu-
seums, schools, and households. Thus robot encounters and
robot interaction with naive persons are predestined. The
usage of robotic devices in the human world requires ap-
propriate design of the robot’s interface to the environment
and of the robot’s cognitive skills, thus enabling intuitive
interaction between robot and people. It is simply impos-
sible for robot designers to anticipate human behavior and
human interaction strategies; this often leads to interactions
being exhausting, enervating or frustrating for the interact-
ing person. However, the person’s feeling of satisfaction with
an interacting robot is difficult to measure.

Appropriate metrics defined to assess robot behavior in all
fields of robotic life (technical merits, speech recognition and
understanding, successful interaction, human and robot be-
havior, proximity, cognitive skills) can help to quantify and
qualify interactions between robots and persons and to give
essential feedback to robotic engineers. Whereas many inter-
national research groups focus on designing intelligent ser-
vice robots, only some research has been done in the field of
creating and employing objective and adequate criteria to
evaluate human-robot interaction, so far.

One common means to assess robot success are benchmarks.
A great variety of benchmarks do exist: some recent exam-
ples with a great deal of public attention are robot soccer
competitions in different leagues [5], test parcours for res-
cue robots [19], the DARPA Grand Challenge [30] and the
DARPA Urban Grand Challenge [1] for autonomous driving
of cars. Human-robot interaction is contemplated by the
RoboCup@Home league founded in 2007 [25]. The perfor-
mance measurement is based on a score derived from compe-
tition rules and the evaluation by a jury. However, a transfer
of such competition concepts and evaluation metrics to do-
mains in the human everyday world can cover only a part of
the necessary evaluation procedures.

Besides competitions, various metrics are used by interna-
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tional researchers like the preferred direction of approach-
ing in a living room scenario [35] or the distance a person
feels most comfortable with when interacting with a robot
[33]. Others, as proposed by [29] include success rates and
number of operator interventions in tele-operated scenarios.
Additionally, metrics for performance, world complexity and
information quantification were established for autonomous
mobile robots navigating in a corridor clotted by random
obstacles [22]. In the first category instantaneous velocity,
traveled distance, mission duration, mission success rate and
power usage were measured, whereas global complexity and
the vicinity of the robot are taken into account in the sec-
ond category. The last metric used is the conditional entropy
measuring the information contained in the internal robot
map compared to the world map.

As soon as communication forms an integral part of human-
robot interaction additional objective metrics like WER:
word error rate (the standard metric for automatic speech
recognition - ASR), CER: concept error rate (error rate to
measure understanding, based on recognized concepts) and
TER: turn error rate (based on number of turns that can-
not be transformed to the correct semantics) can be ap-
plied. Current research on spoken dialog system uses either
objective metrics, subjective metrics, or both. The main
advantages of subjective metrics over objective metrics are
that the user’s subjective perception of the system can be
included in the evaluation. Most measurements are based
on questionnaires with rating scales such as Likert-Scales.
Approaches exist to build a unified framework for the eval-
uation of dialog systems and create comparable scores with
the PARADISE framework [32] for spoken dialog systems.

In contrast to metrics based on measurable characteris-
tics and typically used in engineering, [20] suggest metrics
for human-robot interaction devised from an psychologist’s
point of view which include autonomy, imitation, intrinsic
moral value, moral accountability, privacy, and reciprocity.
These contenders are attributed to a robot by the person
interacting with it.

Coding of behaviors and deriving rules for interaction are
another form of metrics adopted by some research groups.
The problem when applying this procedure is the objective
coding of behavior which actually is a subjective interpreta-
tion of an interaction scene as seen by an observer. In order
to gain valid data the same interaction scenario should be
coded by several independent observers of the experimental
staff. So-called micro behaviors where used by [10] based on
criteria like eye gaze, eye contact, operation and handling,
movements, speech, attention, and repetitions. The length
of eye gaze was used as a correlation to the subject’s level of
interest in a robot or toy truck. Behavior-level codes describ-
ing the adjustment of children to the setting of a commu-
nicative robot interacting with children in a primary school
were used by [24, 21] to analyze the role of their robot.

So far many ideas, methodologies, metrics, and measure-
ment criteria do exist in order to assess human-robot in-
teraction, but most of the applied metrics consider mainly
technical characteristics of the robot. Even success rates of
interactions do not really picture the manifold ways of hu-
man behavior and the reasons for a failure of the interaction.

The problem is that human behavior cannot be measured
using simple scales. The assessment of interactions between
naive persons and robots actually requires a framework of
different metrics: a combination of objective metrics which
can easily be measured and quantifiable subjective metrics
characterizing human behavior. Here, undue influence of
naive subjects as well as biased opinions of observers have
to be taken into account by creating a set-up for sound ex-
perimentation and analysis.

In this paper we suggest contributions for a framework of
metrics for human-robot interaction which considers the
technical merits of the robot system as well as human behav-
ior. Though this work does not present a full framework for
evaluation of the whole robot, this work contributes aspects
from different fields which have been applied to our robot.

The paper is organized as follows. Section 2 correlates robot
skills in human environments with different levels of com-
plexity, which demonstrates that different complexity levels
also require different evaluation tasks. Section 3 describes
example applications which provide a basis for the discus-
sion of metrics, which is presented in Section 4. Section 5
concludes the article.

2. LEVELS OF COMPLEXITY
Relevant metrics for the evaluation of robot behavior cru-
cially depend on the complexity of the task. In [8], we iden-
tified different levels of complexity for technical problems
and cognition-related problems:

In Level 0, the robot only performs well-defined tasks de-
fined by teaching or programming. The structure of tasks is
known and the uncertainty about the environment is limited
(e.g. positions of known objects). This level is state-of-the-
art for most robots. The success of a task can be easily
described by simple objective metrics like time duration or
deviations from desired positions.

Level 1 tasks are characterized by a moderately higher de-
gree of uncertainty. The robot can communicate with known
human operators by understanding a fixed set of commands
in natural language. The commands are associated with
similar skills as outlined in Level 0. However, robots of this
level need some slightly enhanced cognitive skills regarding
error detection and handling. Most demonstrators for ser-
vice robots are situated on this level. The necessary com-
plexity of the metrics is also higher, e.g. for the description
of the communication part.

Level 2 robots are designed for pre-defined domains in real-
world environments like a kitchen. Besides many techni-
cal challenges for movement, communication and cognition
aspects are extremely important, and the robot must be
able to adapt to its environment. The interaction between
robot and human being is mainly based on verbal and non-
verbal communication. Here, the robot’s active ability to
converse and understand a naive person as well as its tech-
nical capabilities to overcome any acoustic diversions are
of great importance. Close interaction with people also re-
quires robots to respect a person’s feeling of comfort. This
includes the recognition of emotional states, the appropriate
spatial distances between robot and person, the knowledge
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about social cues when interacting with people etc. In ad-
dition, the robot should be able to learn to perform specific
motions and actions by imitating a person demonstrating
these movements. Consequently, all robot tasks depend on
the recent scene and are difficult to evaluate.

Higher levels beyond the second one involve even higher
complexity of interaction scenarios, environment, and re-
quired cognitive capabilities of the robot. First of all, the
communication should not be restricted to a given domain.
Different types of people and animals might come into con-
tact with the robotic system. The robot should then know
how to react to and interact with different types of people
i.e. children, adults and handicapped people.

Such steps to higher levels are long-term goals whereas
Level 2 robots should enable successful interactions between
naive persons and robots in partially uncertain contexts.

From a metrics point of view, the evaluation of Level 2 and
higher robots is much more sophisticated. In contrast to
lower levels, the desired task is characterized by structural
and parameter uncertainties. A possible manner is a parallel
evaluation including a subjective and a objective component
followed by a correlation of both parts. This solution will
be outlined in the next section.

3. APPLICATIONS
3.1 Overview
This section describes different applications that address
evaluation tasks from different disciplines and different as-
pects of a humanoid robot and its evaluation. The following
aspects are addressed. Section 3.2 describes ideas for eval-
uation of human likeness concerning complex movements of
the robot. Objective metrics are applied for quantification.
In Section 3.3, two scenarios are discussed for evaluation of
cognitive abilities in the area of interactive knowledge ac-
quisition in dialog. Objective and subjective metrics are
applied for quantification, and especially a trade-off is made
between evaluation of single dialogs for knowledge acqui-
sition and evaluation of the knowledge base. Section 3.4
presents a user study that has been conducted with video
analysis and the use of qualitative measures. Requirements
for experimental design are presented.

3.2 Quantification of Movements
Similarity measures for complex movements are a very im-
portant building block for complex metrics. They should
cover the similarity of a robot movement to a desired human
movement as well as the similarity of a human movement to
a human reference movement. The first case is important
for the evaluation of human-like robot behavior, the latter
one for the on-line detection of human intentions by a robot.

In the last decade, computerized measurement systems for
an instrumented motion analysis have become available [3].
Mostly, a camera-based tracking of external markers placed
on a subject (Fig. 1) and a parameterized standard body
model of a human being result in time series of joint angles.
Newer systems try to overcome the need for external markers
on subjects, but they are still under development. A robot
only uses joint angles based on internal sensors as inputs.

E:\mytex\habil2\bilder

Figure 1: Child with markers for a motion analysis

A main application of such motion analysis systems is the
clinical evaluation of movements e.g. for neurological dis-
eases. Here, the calculation of quantitative measures is es-
pecially important for the monitoring of treatment progress
[11, 2]. One option is the so-called reference distance of a
set of L time series xTS,l[k] relative to a set of references.
After a normalization of different time durations, it can be
calculated by

xRD =
1

K · L

KX

k=1

LX

l=1

|xTS,l[k] − x̄Ref,l[k]|
σRef,l[k]

, (1)

where k = 1, . . . , K are sample points of a time series with
the length K, xRef,l[k] is the l-th reference time series and
σRef,l[k] is the corresponding standard deviation in the ref-
erence time series [34]. The standard deviation within the
reference is used as a time-variant weighting factor. Conse-
quently, a difference with respect to the reference is regarded
as more severe when there is little variation within the refer-
ence motion pattern. A value of zero denotes an identity of
the investigated time series to the reference, a value around
one denotes a ”normal” distance and larger values denote
significant deviation. The main advantage of such a metric
is the compression of a large amount of data to one scalar
measure with a good interpretability. Nevertheless, a set (or
different alternative sets) of reference time series is needed
which can be a problem for complex movements.

As a clinical example, a group of 30 patients with an incom-
plete spinal cord injury was monitored over the course of
their rehabilitation process resulting in a set of 81 analysis
sessions [11]. They underwent treadmill training with par-
tial body weight support as part of their therapy program.
The reference data were obtained from a group consisting
of 10 healthy subjects walking at comfortable self-selected
speeds. Three independent clinical observers subjectively
rated the quality of gait using video documentation on a Vi-
sual Analog Scale (VAS) from 0 (worst) to 10 (best). The
correlation coefficients for the VAS values of the different
observers were between 0.79 and 0.90. A reasonable correla-
tion between VAS and objective metrics can be reached for
the gait velocity (correlation coefficients to the observers:
0.68 - 0.79) and the reference deviation for the joint angles
of ankle, knee, hip and pelvis in the sagittal plane measured
by (1) (correlation coefficients to the observers: 0.60 - 0.67).
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Such metrics allow an analysis of clinical observer’s decisions
and are a step to a more objective decision support system.

The alternative use of Hidden Markov Models (HMM) for
similarity measures of motions based on a motion library [28]
has advantages and disadvantages. On one hand, HMMs can
model sequences of different motions including structural
changes. On the other hand, they need a large set of training
data and the interpretability of the internal processing is
rather limited.

All discussed approaches offer the opportunity for the gen-
eration of objective evaluation metrics for the similarity be-
tween human and robot movements. Open problems include
a sufficient representation of human reference movements
for robots covering the variety of possible human-like move-
ments during a robot task.

3.3 Knowledge Acquisition in dialog
Quite a number of dialog systems already exist and differ-
ent metrics and evaluation schemes have been applied and
tested. Metrics that have been applied to such systems are
described in relevant literature as either objective or subjec-
tive metrics, or both in combination. As lined out before,
both are useful for measuring. We first want to present ob-
jective metrics and then describe subjective user feedback.

3.3.1 Evaluation of dialog
The list of different objective metrics which have been ap-
plied to dialog systems is relatively short. Most systems
use some kind of recognition accuracy, dialog length, and
dialog success. Recognition accuracy can be represented as
Word-Error-Rate (WER) which is the most simple metric.
It has the advantage that it is usually used for evaluation
and comparison of speech recognition systems and can eas-
ily be computed when the transcription of speech input is
given. However, WER is not necessarily the best metric
to represent recognition accuracy. For example, it doesn’t
distinguish between content words and non-content words.
Sentence-Error-Rate (SER) checks the correctness of com-
plete sentences. Some evaluations measure correctly recog-
nized semantic concepts, for example (semantic) Concept-
Error-Rate (CER) [9, 12, 15]. Differences exist whether
CER is defined on fully correct semantic input or regarding
the details used to measure correctness. CER is probably
the metric, which is best suited to represent input under-
standing in a dialog system, because it is measured by the
correctness of the input, which is actually used by the di-
alog manager. However, it requires semantic transcription
of input, and is not as simple as word-error rate, since it
depends on the type of semantic structure and details of
semantic transcription.

dialog length is usually measured in number of turns to
achieve a certain goal. In task-oriented systems the num-
ber of turns is measured to achieve a predefined task. Some
other metrics have been used, such as the total amount of
time in seconds, or the number of syllables spoken [27]. [12]
uses concept efficiency (CE) which quantifies the average
number of turns necessary for each concept to be understood
by the system, and query density (QD) which measures the
mean number of new concepts introduced per user query.
Both metrics relate to the length of the dialog with respect

to how effectively information can be communicated without
the necessity of a task definition.

A widely used metric is dialog success. However, the defini-
tion of dialog success varies among different systems. Most
approaches use achievement rates of dialog goals, e.g. [26].

As a framework for dialog system evaluation, PARADISE
[32, 31] is best known. It offers a prediction model for qual-
ity judgments based on a regression model with interaction
parameters as input. It serves two purposes, one part is
the framework for prediction of quality judgments, the sec-
ond part is a set of questions and metrics for evaluation.
The framework has been applied to a number of different
systems, for example [13]. Since PARADISE has initially
been designed for speech-only interactions, a modified ver-
sion, PROMISE, has been suggested by [4] to address as-
pects of multimodal systems.

Such frameworks apply both, objective and subjective met-
rics. Subjective evaluation is usually conducted with the
help of questionnaires, which allow quantitative measure-
ments based on Likert-Scales. A Likert-scale is a unidi-
mensional scale with a discrete set of response possibilities,
usually a 5-point, or sometimes a 7-point scale to rate be-
tween Disagree and Agree. Questions are then formulated
as statements. Some approaches use different opposites than
agreement or disagreement, such as ’good’ vs. ’bad’, ’very
much’ vs. ’not at all’. Questions are then formulated as
real questions, such as ”How is your overall impression of
the interaction?”. An analysis of de-facto evaluation stan-
dards for quality of the interaction with spoken dialog sys-
tems is presented in [23]. Here, two questionnaire meth-
ods are compared, the SASSI questionnaire [18, 17] and the
ITU-T Recommendation P.851. In addition, a classification
scheme and taxonomy of quality aspects were presented. As
a result, both questionnaires provide valid measurements of
different quality aspects. The subjective feedback was com-
bined with extracted parameters to predict system usability
and acceptability. Extracted parameters are integrated into
a prediction model with the PARADISE framework, from
which helpful information was obtained for system design,
but not general predictions of system usability and accept-
ability.

3.3.2 Application to Object Learning
Advanced humanoid robots, as we have described in the pre-
vious sections as Level 2 and Level 3 robots, need to be able
to adapt to their environment, which includes that they are
able to learn new information. For learning we describe two
tasks. The first task addresses learning of objects, the sec-
ond task addresses interactive learning of person ID models.

Interactive learning is a key requirement for cognitive au-
tonomous systems. A humanoid robot, e.g. in a household
environment frequently encounters previously unknown ob-
jects. We have addressed this task with a scenario, where
the robot can interactively learn new objects, such as CDs,
books, chocolate, etc. Our approach for interactive learning
of objects integrates several knowledge sources and aspects:

• visual information is acquired and stored for new ob-
jects for visual recognition
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task #dialogs success avg turns

learn object property 40 83% (33) 1.8
- with known words 25 87% (22) 1.4
- with spelling 15 74% (11) 2.6

Table 1: Success rates and dialog length for learning
of object properties. Numbers are given for evalua-
tion on all dialogs, and separated by whether words
were known to the robot, or spelling has been used.

• different descriptions for reference in speech can be
acquired for a new object, which covers introduction
of new words

• semantic information about the object is acquired in
dialog. Semantic information covers the type of the
object and properties.

Quantification of successful interactions and success of
knowledge acquisition can be defined on a dialog basis (eval-
uation of the interaction) or by means of knowledge base
quality. Metrics for evaluation of the knowledge base can be
defined in terms of correctly learned objects on a predefined
set of objects which are shown to the robot. Additionally,
we suggest to use recognition rate of learned objects, to eval-
uate if the learned knowledge is applicable.

These metrics were applied in a small system evaluation
with 52 dialogs, during which some of these metrics were
studied, regarding system components, dialog-based met-
rics, and quality of the knowledge base. 40 dialogs were
conducted with unknown objects. Component evaluation
measures recognition rates of object recognition and speech
recognition. dialog-based metrics consider dialog length and
dialog success. In this evaluation, dialog success also repre-
sents the learning rate. 12 dialogs were conducted with pre-
viously learned objects. Here, quality of the knowledge base
was evaluated in terms of recognition accuracy for learned
objects, which is only one possibility described above to as-
sess quality of the knowledge base. During all dialogs, recog-
nition rates were calculated for all attempts to recognize an
object, which is the standard evaluation metric for recogni-
tion components, and recognition rates including confirma-
tion dialogs. Standard recognition rate e.g. is 81% for visual
recognition. Including confirmation dialogs and a second at-
tempt to recognize the objects, the recognition rate is 94%.
Success of the learning dialogs is measured in success rates
to obtain object descriptions, object type and object prop-
erties. Table 1 shows numbers for learning of dialog prop-
erties from the experiment. In a similar way, the dialogs
for learning of semantic categories have been evaluated. For
comparison of different dialog strategies, different tests are
conducted were the strategies are applied iteratively.

3.3.3 Application to Person ID Learning
Our scenario for interactive learning of person ID informa-
tion is based on an interactive system in a corridor as a robot
receptionist. Its task is to greet persons who pass the robot,
engage in a dialog, try to identify the person and once the
person is known obtain more personal information. First
studies and experiments for identification have already been

conducted [14, 16], which evaluate success of engagement
and dialogs for learning names, and optimization of dialog
strategies with reinforcement learning.

Evaluation of this scenario again integrates evaluation of the
dialogs and evaluation of the knowledge base. A series of
experiments has already been conducted with this scenario.
First evaluations have also been conducted, but a more pro-
found evaluation with all metrics suggested here, is still to
be realized. For evaluation of the knowledge base we first
consider the ground truth of pieces of information that can
be learned by the system. Ground truth must be known in
advance or be transcribed from collected data. Information
gathered by the system and which constitutes the knowledge
base are the ID of a person, the person’s first and last name,
a portrait snapshot of the person and several attributes as-
sociated with the person. Attributes associated with the
person are pieces of information like the email address, so-
cial relations with other persons, and research topics. Each
of these items can be evaluated with binary values ’exists’
vs. ’doesn’t exist’, ’correct’ vs. ’wrong’ - except social rela-
tions for which other metrics need to be defined. Based on
these single binary values we plan to evaluate the knowledge
base with standard metrics used in machine learning, from
which especially precision/recall provides a good metric.

In [7] we have presented a user study that was conducted
as a Wizard-of-Oz experiment. The system was designed as
a standalone system, and a human operator took over the
dialog decisions. The system was tested with 16 persons,
each of them interacting with the system on three consec-
utive days. Here, differences between dialog success and
knowledge base quality become obvious. To measure dia-
log success, the number of dialogs is counted, in which the
person was correctly identified. It must be noted that the
success metric can be applied in different ways. For example,
some names are phonetically identical such as Stephan and
Stefan, thus there are differences to which degree informa-
tion must be correct to account for a successful dialog. The
numbers of successful dialogs, where success defines correct
identification and acceptable name pronunciation, was 56%
at day 1, 81% at day 2, and 100% at day 3. On average these
are 79% successful dialogs. The knowledge base quality is
slightly different. Using the same criteria as before, recall
is 56% by the end of day 1, 88% by the end of day 2, and
100% by the end of the experiment. In addition, precision
is calculated, which is 73% by the end of day 3, since 3 per-
sons have been stored incorrectly and 3 other persons have
been stored twice, with similar names (e.g. as Chilipp and
as Philipp).

3.4 Dialog-based Human Robot Interaction
In order to assess and compare various forms of human-
robot-interaction we conducted several experiments featur-
ing rather simple scenarios like a bartender robot, a recep-
tionist robot with person ID learning and a communicative
robot with person ID learning and knowledge acquisition
about social networks (Fig. 2). In all experiments the sub-
jects had to talk to the robot, either to receive or to give
information.

A multitude of quantitative and qualitative methods of em-
pirical social research were used for the sociological evalua-
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Figure 2: Person interacting with the robot.

tion of all experiments. Protocols were written by a team
member during each interaction, invisible for the subjects;
after each experiment questionnaires had to be filled out and
interviews were conducted. Quantitative data were gained
by the questionnaires and the protocols: the first supplied
the answers of open questions based on scales of seven incre-
ments, the latter supplied data about the number of turns,
total duration or number of breakages in connectivity. The
bartender robot as well as the network-building robot both
only talked in English whereas the receptionist robot talked
in German. Some difficulties resulted from English not being
the native tongue of the subjects.

The evaluation itself focused activities of the actors as well
as the interaction, which were recorded on videos from two
different angles (an overall view of the scene as well as a
frontal recording of the face and upper body of the sub-
jects). A special tool called Interaction Analysis Tool (IAT,
formerly called IAP [7]) has been developed by our team
for the quantitative as well as the qualitative analysis of
the recorded interactions. There are several layers; the first
pictures what happened, when and where during an inter-
action. This is a typical transcript of video data, which
can be conducted by any social scientist skilled in objective
transcription of videos, thus supplying data for the quanti-
tative analysis. The other layers provide qualitative data, as
here phases of the interaction, specific events, and criteria
(i.e. initiative, coherence, transparency, redundancy, infor-
mation strategy) are emphasized (for a close description of
the IAT (IAP) please refer to [7]). Why and how something
happened is addressed by these layers; this is an interpre-
tation and hermeneutic description of the observed actions
(behaviors), which is best done by a group of evaluators inde-
pendently. In this way the meaning of a sequence of actions
or turns can be better explained by following the best argu-
ments of the independent evaluators. Additional qualitative
data are gained by extracting the subjects’ stories about the
robot and the situation from the interviews. These stories
often corroborate an interpretation of a sequence of actions.
The actual criteria of an interaction, as defined within the
IAT, as well as specific events (loops, omissions, breaks, ...)
and, phases, form patterns which can be linked to a spe-
cific behavior of either robot or subject. In this way the
human factor can be assessed far more explicitly than just

considering the mere success rate of an interaction.

4. DISCUSSION
The previous sections have shown applications of different
objective and subjective metrics for different tasks. In this
section, we propose first ideas of a generic concept for the
evaluation of Level 2 robots. It includes remarks to

• the experimental design,

• the integration of existing objective metrics, and

• steps to a quantification of subjective metrics.

To obtain reliable results, sound experimental design is
essential in order to avoid systematic errors. Here, insights
from sociology and psychology need to be considered. First,
appropriate test scenarios are necessary. To cope with the
uncertainties resulting from the complex environment, the
tests scenarios should be designed as a series of tests on
different test trials.

For our experiments with dialog based human robot inter-
action, we have selected persons that were completely un-
known for the robot at the first meeting. In addition, the
subjects have not been prepared about the robot’s capa-
bilities before interaction with the robot. While conducting
experiments with people who are familiar with human-robot
interaction can solely evaluate interactions of persons that
are familiar with the robot, experiments with ’naive’ users
are the only way to model situations in which people first
meet a robot. It is a natural situation for the first ”getting
in contact”with personal robots or meeting unknown guests
during the whole lifetime of a robot. Generally, such meet-
ings should be performed for a higher number of different
subjects (e.g. age, sex, profession) to catch the bandwidth
of human communication behaviors. Such tests evaluate
the robustness of the robot to communicate with different
subjects characterized by completely different expectations
about the robot’s behavior. The environment of the ex-
periment needs to be taken special care of, with the target
scenario in mind. For example to represent an everyday sce-
nario in a household environment would contain background
noise e.g. with radio, TV, or additional people in the back-
ground. The robot operators should not be visible to avoid
an influence by tips and hints to the interacting persons.

In addition, repetition trials with the same persons at differ-
ent days can imitate an alternating learning process between
human and robot. Here, the robot’s ability to exploit the
knowledge about a special subject to adapt its own behavior
is tested.

Test subjects have different notions about the success or fail-
ure of an interaction as well as the reasons for failure and
build up different internal mental pictures of the robot’s ca-
pabilities. To obtain these notions, subjective user feedback
can be obtained in form of a user questionnaire to obtain
quantifiable results or in form of an interview to obtain qual-
itative feedback.

Objective metrics can mostly be calculated automatically
and need no further processing steps in between by a person.
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They are very useful in many parts of the system. However,
with the current knowledge about metrics for human-robot
interaction they are not sufficient. Quantitative, objective
metrics evaluate e.g. success rates for underlying skills like
navigation (e.g. possible speed, deviation from the planned
route, number of touched obstacles), speech recognition and
generation (e.g. number of successful dialogs), manipulation
(e.g. number of successful handled objects). They aggre-
gate metrics from underlying low-level motor and percep-
tions skills with related metrics such as tracking errors to
planned joint trajectories, control errors, and stability mar-
gins of basic control loops, maximal movement speeds for
robot joints, the number of not-identified objects, localiza-
tion accuracy of objects according distance, height, num-
ber of recognized words, delay time for answers etc. Some
of these metrics are useful for self-evaluation of the robot
to improve its abilities for adaptation, fault detection, and
safety-related supervision.

A guiding principle to design quantitative on-board metrics
is the evaluation of differences between the expected and
actual behavior of robot and environment. These metrics
are good measures for the ability of the robot to predict
future situations based on its own experiences.

All metrics listed above are useful to evaluate some facets
of the robot behavior. It will be impossible to aggregate all
metrics to an overall performance metric due to their dif-
ferent natures, their requirements in further processing and
interpretation and their partially non-automatic acquisition.
An alternative will be a multi-modal evaluation leading to
scores for Pareto-optimal robot behaviors with advantages
for different sub-metrics.

Subjective metrics like questionnaires, interviews, stories,
protocols taken by team members, and video data are hard
to quantify and qualify. They vary according to the people
involved. Usually, there are no measurable scales on com-
fort, acceptance, or other criteria, as each test subject has his
or her own scale as well as his or her individual image of the
interacting robot. Additionally, video data, questionnaires,
and log-files have to be compared, as statements given in
questionnaires can contradict the actual behavior of a test
subject recorded on video.

Also the coding or evaluator’s side has different amount of
subjective influence, depending on the evaluation task. This
is not wanted to obtain objective measurements, and thus
needs to be taken special care of. As soon as additional peo-
ple are involved in coding human behavior, whether actions,
reactions or adjustments from video data, different personal
views enter the coding. Actually, the same video sequence
should be coded by at least two different people.

All subjective metrics need additional people to either pro-
cess the data i.e. transcription of video files or coding or to
analyze and interpret acquired data. Here again, personal
opinions of the evaluators can impair results. Once either
category has been assigned to individual test runs and turns
between a person and a robot or behavior has been coded,
these codes can serve as metrics, as coded categories and
behaviors form characteristic patterns [6, 10, 24]. Then dif-
ferent test runs with the same subject as well as test runs

with different subjects are much easier to assess and com-
pare.

In the literature of recent work in evaluation of human-robot
interaction we have found the following approaches for sub-
jective metrics:

• questionnaires, the outcome depends on the kind of
questions and scales

• interviews, the outcome depends on the kind of ques-
tions and the interviewer,

• video analysis, which requires video transcription. Due
to differences in coding, several people should code the
same sequences,

• coding of behavior [24], [10],

[6] describes the following criteria for objective assessment
based on coded subjective criteria

• criteria describing the interaction context (interaction
patterns, interaction rules, roles, degree of freedom),

• criteria describing the interaction itself (intensity, con-
gruity, convergence, synergy, efficiency),

• criteria describing the activity of actors (transparency,
roles),

• criteria describing non-verbal actions and emotions
(mimics, postures, gestures, affects),

• specific coding of micro behaviors.

Another idea is a linear or nonlinear correlation of exist-
ing subjective and objective metrics for a larger set of ex-
periments. This concept might contribute to a deeper un-
derstanding of human impressions coded by the subjective
metrics. If strong correlations between such metrics can be
found, the related objective metrics might be used as inde-
pendent variables in a regression model for the description
of subjective metrics as dependent variables. For this ap-
proach, a careful statistical analysis is necessary to avoid an
over-fitting of a model based on a small number of experi-
ments.

5. CONCLUSION
This paper analyzes metrics for human-like movements and
interaction patterns for intelligent robots. Such metrics are
needed for the evaluation of humanoid robots interacting
with people in a natural environment. Existing quantitative
metrics for robot evaluation are often focused on a small
subset of technical robot skills. This kind of evaluation does
not cover important aspects for complex scenarios like the
overall performance in a task or the comfort and acceptance
for interacting people. On the other hand, many proposed
subjective metrics like questionnaires do not result in quan-
titative scales needed for an objective evaluation of human-
robot interaction.
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We propose the integration of strategies for experimental
design and evaluation criteria coming from a technical, psy-
chological and sociological background. Different aspects
are discussed in the context of applications, including met-
rics for the similarity of human movements, knowledge ac-
quisition in dialog and the dialog-based human robot inter-
action. The experimental design must be oriented on the
robot’s expected future field of application. If e.g. the robot
will mainly interact with unknown persons, the test sce-
nario should base on the interaction with a larger group of
naive subjects without specific knowledge about the robot
capabilities. Only such test scenarios will provide realistic
evaluations of robot behavior. Information from qualitative
metrics should be step-wise quantified, e.g. by means of cor-
relation analysis between questionnaires and candidates for
quantitative features.

A main problem of quantification in HRI analysis is the
transcription and coding of recorded data from experimen-
tal runs as a sequence of human and robot actions. Up to
now, it requires a huge manual effort. These results might
be valuable building blocks for quantitative metrics. An au-
tomation of these steps, i.e. complete reliance on objective
metrics, is only possible if the robot is able to identify and to
interpret human behavior by itself. Till then, a mixture of
objective and subjective metrics, quantitative and qualita-
tive evaluation constitutes a necessary mixture of different
aspects for evaluating robot performance in human-robot
interaction scenarios.
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ABSTRACT 
In this paper, we describe an effort to identify generalizable 
metric classes to evaluate human-robot teams. We describe 
conceptual models for supervisory control of a single and 
multiple robots. Based on these models, we identify and discuss 
the main metric classes that must be taken into consideration to 
understand team performance. Finally, we discuss a case study 
of a search and rescue mission to illustrate the use of these 
metric classes to understand the different contributions of team 
performance  

Categories and Subject Descriptors 
J.7 [Computers in Other Systems]: Command and Control; 
H.5.2 [User Interfaces and Presentation]: Evaluation/ 
methodology 

General Terms 
Measurement, Performance, Experimentation, Human Factors 

Keywords 
Metrics, Human-Robot Teams, Performance, Supervisory 
Control 

1. INTRODUCTION 
Mission effectiveness is the most popular metric to evaluate the 
performance of human-robot teams. However, frequently this 
metric is not sufficient to understand team performance issues 
and to identify design improvements, and additional metrics are 
required. 

Despite the importance of selecting the right metrics, few 
general guidelines that apply to a wide range of human-robot 
applications are available in the literature. In many cases, 
researchers rely on their own experience, selecting metrics they 
have used previously. Alternatively, other experiments measure 
every system parameter to ensure that every aspect of system 
performance is covered. These approaches lead to ineffective 
metrics and excessive experimental and analysis costs. 
Moreover, existing metrics for evaluating human-robot teams 
are usually application-specific, which makes comparison 
across applications difficult.  

The goal of this research is to provide general guidelines for 
metric selection that are applicable to any human-robot team 
operating under a supervisory control paradigm. We believe 
that identifying generic metric classes that organize the 
different types of metrics available will help researchers select 

a robust set of metrics that provide the most value for their 
experiments and allow comparison with others. Metrics may 
still be mission-specific, however metric classes are 
generalizable across different missions. In the context of this 
paper, a metric class is defined as the set of metrics that 
quantify a certain aspect or component of a system. 

The idea of developing a toolkit of metrics and identifying 
classes to facilitate comparison of research results has already 
been discussed by other authors. For example, Olsen and 
Goodrich proposed four metric classes to measure the 
effectiveness of robots: task efficiency, neglect tolerance, robot 
attention demand, and interaction effort [1]. This set of metrics 
measures the individual performance of a robot, however, a 
particular robot performance does not necessarily imply a level 
of human performance. Since human cognitive limitations often 
constitute a primary bottleneck for human-robot team 
performance, a metric framework that can be generalized 
should also include cognitive metrics to understand what drives 
human behavior and cognition.  

In line with this idea of integrating human and robot 
performance metrics, Steinfeld et al. suggested identifying 
common metrics for human-robot interaction in terms of three 
aspects: human, robot, and the system [2]. Regarding human 
performance, they discussed three main metric categories: 
situation awareness, workload, and accuracy of mental models 
of device operations. This work constitutes an initial step 
towards developing a metric toolkit, however it still presents 
some limitations. On the one hand, this framework suffers from 
a lack of metrics to evaluate collaboration effectiveness among 
humans and among robots. On the other hand, a more 
comprehensive discussion on human performance is still 
required. For example, the authors discuss trust as a task-
specific metric for social robots but it is not included as a 
common metric required to evaluate operator performance. We 
believe that operators’ trust in robot behavior is often a key 
factor in team performance. 

The research presented in this paper builds upon previous 
efforts conducted by Crandall and Cummings [3]. It refines, 
expands, and generalizes the set of metric classes already 
identified for human-robot teams consisting of a single human 
and multiple robots. The paper builds a conceptual model for 
human supervisory control of multiple robots. Then metric 
classes are identified from this model. Finally, a case study on a 
search and rescue mission is discussed to illustrate some of the 
proposed metric classes. 
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2. CONCEPTUAL MODEL 
This section presents and discusses our conceptual models of 
human supervisory control of robots, including a single 
operator controlling a single robot, a single operator controlling 
multiple robots, and multiple operators controlling multiple 
robots. 

2.1 Supervisory Control of a Single Robot 
“Supervisory control means that one or more human operators 
are intermittently programming and continually receiving 
information from a computer that itself closes an autonomous 
control loop through artificial effectors and sensors to the 
controlled process or task environment [4].” Most human-robot 
teams operate under a human supervisory control paradigm 
where robots have a certain degree of autonomy and the human 
guides them, monitors their performance, and intervenes when 
needed. Examples of this are found across several domains and 
applications: surveillance and target identification for military 
operations, health care applications such as mobility assistance 
and therapy, rock sampling for geology research, or other 
logistic applications such as personnel or material delivery. 

All these examples can be conceptually represented by the 
model shown in Fig. 1. This model is composed of four 
interrelated main elements: robot behavior, human behavior, 
human behavior cognitive precursors, and human behavior 
physiological precursors. We believe that these four elements 
delineate the main metric classes for single operator-single 
robot teams. In addition to these four elements, two other 
concepts are represented in Fig. 1: uncertainty, and the mission 
or the task. Uncertainty refers to the uncertainty associated with 
sensors (e.g., accuracy) and actuators (e.g., lag), displays (e.g., 
transforming 3D information into 2D information), and the real 
world. This uncertainty propagates through the system reaching 
one or more operators who adapt their behavior to the 
uncertainty level by applying different cognitive strategies.  

Regarding the mission or the task imposed on the operator, 
human behavior and system performance depend on the nature 
of the tasks. High structured tasks, those that can be planned in 

advanced and are procedurally-driven, are very different, from 
a human perspective, from those that have low structure levels, 
which are generally emergent tasks that require solving a new 
problem under time-pressure. Human-robot team performance 
can only be understood if considered in the context of the 
mission and the task. 

The goal of this paper is to develop a general framework for the 
analysis of human-robot team performance. However, our focus 
is on those metrics of human behavior efficiency and human 
behavior precursors, rather than metrics of robot behavior 
efficiency. The fact that many human-robot teams are remote 
makes it essential to measure the human component. Operators 
who remotely operate a robot do not physically perceive the 
interaction of the robot with the real world. This can have a 
negative impact on situation awareness and human trust, which 
in turn can affect performance. 

2.1.1 Robot & Human Behavior Efficiency 
Robot and human behavior are represented by the two control 
loops shown in Fig.1: the human control loop and the robot 
control loop. The operator receives feedback on robot and 
mission performance, and adjusts robot behavior through 
controls if required. The robot interacts with the real world 
through actuators and collects feedback on mission 
performance through sensors. The evaluation of team 
performance requires an understanding of both control loops. 
The rest of this section focuses on human behavior. 

Human behavior, in the context of Fig. 1, refers to the decisions 
made and actions taken by the human while controlling the 
robot. The model presented in Fig. 1 categorizes human 
behavior in terms of problem recognition, decision making, and 
action implementation. These three categories are based on the 
four-stage model of human information processing described by 
Parasuraman, Sheridan, and Wickens: 1) information 
acquisition, 2) information analysis, 3) decision and action 
selection, and 4) action implementation [5]. Our model merges 
the stages of information acquisition and analysis into the 
problem recognition category. Acquisition and analysis of 
information are often hard to differentiate, and the human 

Figure 1. Conceptual Model of Human-Robot Interaction in Supervisory Control. 
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ability to recognize problems is a more valuable metric for our 
purposes. Thus, understanding human performance requires 
evaluating each one of the three categories defined by our 
model. 

Human-computer interactions (HCIs) are the observable 
outputs of human decisions, and they are commonly used to 
measure human behavior efficiency. Based on our model, these 
interactions should also be analyzed in terms of problem 
recognition (e.g., access to information about the environment 
dynamics), decision making (e.g., use of what-if functionalities 
to explore consequences of actions), and action implementation 
(e.g., entering new coordinates for a robot’s destination). Such 
decomposition enables a more comprehensive evaluation of 
team performance. However, disaggregating HCIs may not 
always be possible. 

In addition to human efficiency for problem recognition, 
decision making, and action implementation, human attention 
allocation is a key component of human behavior. The 
evaluation of attention resource allocation helps in the 
understanding of operators’ strategies and priorities. Operators 
have limited attention resources that need to be shared between 
multiple tasks [6]. Although as seen in Fig. 1, one single robot 
is controlled, the operator still performs multiple tasks such as 
monitoring the dynamics of the environment, identifying 
emergent events, monitoring robot health, or executing manual 
control of the robot. How humans sequence and prioritize these 
multiple tasks provides valuable insights into the system. 

2.1.2 Human Behavior Cognitive and 
Physiological Precursors 
Evaluating human observable behavior can still be insufficient 
since all mental processes do not have immediate and 
observable outcomes. The evaluation of human performance 
requires understanding what motivates the behavior and the 
cognitive processes behind it. Human behavior is driven by 
high level cognitive constructs and processes such as mental 
models1 and situation awareness2 (SA). For our discussion, 
mental models refer to long-term knowledge, whereas SA 
reflects dynamic knowledge. Understanding human mental 
models is important because ideally, an interface design should 
be consistent with people’s natural mental models about 
computers and the environment [10]. Poor SA or lack of 
understanding of a dynamic environment, when performing 
complex cognitive tasks, can have dramatic consequences such 
as the incident at Three Mile Island [11].  

Mental models and SA are not the only human behavior 
cognitive precursors. In the context of this paper, human 
behavior cognitive precursors refer to cognitive constructs or 
processes that existed or occurred before a certain behavioral 
action was observed. Human trust in the robots, mental 

                                                                 
1 The phrase “mental models” refers to organized sets of 

knowledge about the system operated and the environment 
that are acquired with experience [7]. 

2 SA is defined as “the perception of the elements in the 
environment within a volume of time and space, the 
comprehension of their meaning and the projection of their 
status in the near future” [8]. In the context of human-robot 
teams, SA encompasses awareness of where each robot and 
team member is located and what they are all doing at each 
moment, plus all the environmental factors that affect 
operations [9]. 

workload, and operator emotional state are other examples of 
cognitive constructs and processes that can also cause certain 
human behaviors.  

Furthermore, physiological processes can reflect physical states 
such as fatigue, or physical discomfort which can also motivate 
certain human attitudes. 

2.1.3 Conclusions 
Our model represents the need for evaluating four main 
elements to understand the performance of a single operator-
single robot team: robot behavior, human behavior, human 
behavior cognitive precursors, and human behavior 
physiological precursors. These four elements are all 
interrelated. For example, events in the real world are captured 
by the robot sensors and presented to the human operator 
through the display. Modifications on the display can affect 
human attention allocation and SA, which in turn will result in 
changes in HCI patterns, which can ultimately affect robot 
performance. Understanding system performance implies 
understanding the relations among these elements. 

2.2 Supervisory Control of Multiple 
Independent or Collaborative Robots 
The previous section discusses a model for one operator-one 
robot team, but operators can simultaneously control multiple 
robots. In order to expand the model in Fig. 1, we consider two 
different scenarios: a) multiple robots performing independent 
tasks, and b) multiple robots performing collaborative tasks. In 
this paper collaboration between robots means two or more 
robots working together to accomplish a shared goal under 
human supervision.  

In the case of independent robots, servicing robot 1 and robot 2 
are two independent tasks. The operator monitors the 
environment and the robots, decides on which one to focus 
his/her attention, interacts with that robot, and returns to 
monitoring or decides to service another robot. While servicing 
one of the robots, the operator behaves similarly as if he/she 
supervised only one single robot. Our model assumes that the 
operator does not service multiple robots in parallel. This 
assumption is based on the limited human cognitive resources 
and the high task demands imposed by supervising complex 
and dynamic environments under time pressure. Figure 2 
illustrates this model of human supervisory control of multiple 
independent robots. 
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Multiple robots working together to achieve a common goal can 
autonomously collaborate or be manually coordinated by the 
operator. In the case of autonomous collaboration among robots 
without the possibility for human intervention, collaboration 
only occurs at the level of the robot behavior loop and the 
model in Fig. 2 is still valid. However, in the case of active 
human coordination, the operator executes two dependent tasks 
(i.e., servicing robots 1 and 2) that cannot be decoupled. Figure 
3 illustrates the later model, where the control loops for robot 1 
and robot 2 are not independent and separated entities. 
Controlling collaborative robots requires the operator to 
understand the consequences of an action across both control 
loops and to actively coordinate between them. For example, 
making a decision for robot 1 can involve acquiring and 
analyzing information related to robot 2, and implementing an 
action for robot 2 can require synchronizing it with another 
action for robot 1. Interfaces for collaborative robots should 
aggregate data from each control loop and display it so that the 
operator can easily understand the interconnections and the 
consequences of these dependencies.  

In our previous example with independent robots, the three 
categories of human behavior (i.e., problem recognition, 
decision making, and action implementation) could be 
evaluated separately for robot 1 and robot 2. In the case of 
collaborative robots, these three categories have to be analyzed 
for both robots aggregately. 

2.3 Human Collaboration in Supervisory 
Control of Multiple Robots 
This section expands previous models to the case of multiple 
humans collaborating to control multiple robots. In these 
situations, system performance is directly linked to human 
collaboration. Our model considers two main dimensions of 
collaboration: team behavioral actions and team cognition. 
Figure 4 illustrates this model. 

The evaluation of team behavioral actions consists of 
measuring both the efficiency of team coordination and the 
team efficiency in each of the three categories of human 

behavior (i.e., problem recognition, decision making, and action 
implementation). The team works together as a single entity to 
perform collaborative tasks so performance should be measured 
at the holistic level rather than aggregating team members’ 
individual performance [12]. Team coordination comprises of 
written, oral, and gestural interactions among team members.  

Team cognition refers to the thoughts and knowledge of the 
team. Measures of team cognition can be valuable in 
diagnosing team performance successes and failures, and 
identifying training and design interventions [12]. Moreover, 
efficient human collaboration is often shown to be related to the 
degree that team members agree on, or are aware of task, role, 
and problem characteristics [13]. Thus, team mental model and 
SA are two precursors of team performance. 

The efficiency of the team mental model includes assessing the 
similarity, overlap, and consistency of the individual mental 
models. For team SA, both environment and team dynamics 
need to be understood. However, each member does not have to 
be aware of every change; the common picture is shared by the 
team, not necessarily by all its members individually. As 
Gorman et al. discuss, better performance does not necessarily 
mean all team members sharing a common picture [14]. In 
addition, evaluating team cognitive precursors can also include 
evaluating workload distribution and social patterns and roles 
within the team. 

3. GENERALIZABLE METRIC CLASSES 
Based on the models presented in this paper, we can infer six 
generalizable metric classes relevant for human-robot team 
evaluation. Examples of sub-classes are included in brackets. 

• Mission Effectiveness (e.g., key mission performance 
parameters) 

• Human Behavior Efficiency (e.g., attention allocation 
efficiency, problem recognition efficiency, decision 
making efficiency, action implementation efficiency) 

• Robot Behavior Efficiency (e.g., error-proneness, 
robustness, autonomy, learnability, memorability) 

Figure 2. Supervisory Control of Independent Robots. Figure 3. Supervisory Control of Collaborative Robots. 
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• Human Behavior Cognitive Precursors (e.g., mental 
models, SA, mental workload, trust in automation, self-
confidence, emotional state) 

• Human Behavior Physiological Precursors (e.g., physical 
workload, physical comfort, physical fatigue) 

• Collaborative Metrics 
– Team Behavioral Action Efficiency (e.g., coordination 

efficiency, collaborative problem recognition efficiency, 
collaborative decision making efficiency, collaborative 
action implementation efficiency) 

– Team Cognition Efficiency (e.g., team mental models, 
team SA, workload distribution, social patterns and 
roles) 

– Robot Collaboration Efficiency 
Evaluating the performance of the whole human-robot team 
requires applying metrics from each of these classes, but 
including metrics of every sub-class for every experiment can 
be inefficient and costly. As a rule of thumb, in addition to the 
more popular mission effectiveness and robot behavior 
efficiency metrics, incorporating at least one metric from the 
classes of human behavior efficiency, human behavior 
cognitive and physiological precursors, and collaborative 
metrics enables better team performance evaluation.  
The next section discusses an experiment where a single 
human controlled multiple robots conducting a search and 
rescue mission. This study considered metrics for mission 
effectiveness, human behavior efficiency, and human 
behavior cognitive precursors. The value of incorporating 
metrics from each of these classes is discussed in the context 
of this experiment. 

4. A CASE STUDY: SEARCH AND 
RESCUE MISSION 
4.1 Experiment Description 
In this experiment, a human participant teamed with multiple 
simulated robots to perform a search and rescue mission: 

removing objects from a maze3 using different number of 
robots (2, 4, 6, or 8). The goal was a) to remove as many 
objects from the area as possible during an 8-minute session 
while b) ensuring that all robots were out of the maze when 
time expired. Collecting objects from the maze required the 
user to perform navigation and visual search tasks. First, the 
user assigned an object to the robot and the robot moved to 
that location. Second, the robot “picked up” the object, which 
in the experiment was simulated by the visual search of 
identifying a city on a map of the United States using Google 
Earth-style Software. Third, the user assigned one of the two 
maze exits to the robot and the robot carried the object out of 
the maze. The objects were randomly spread through the 
maze. 
The maze was initially unknown, but the robots created and 
shared a map of the maze as they moved around it. Each robot 
could choose its path, choosing to explore an unknown path if 
it thought that path could possibly be shorter than the shortest 
known path to its user-specified destination. In addition, the 
robot would automatically choose an object or an exit after it 
had been waiting for a user-command for longer than 15 
seconds. The user could at any moment redirect the robots to 
different locations by reassigning their destinations or 
rerouting them through a different path.  
Sixteen people between the ages of 19 and 49 years old 
participated in the study. After completing a training and a 
comprehensive practice session, each subject participated in 
four 8-minute sessions, each with a different robot team size. 
The conditions of the study were randomized and counter-
balanced. More details on the experimental setup can be 
found in [3]. 

4.2 Metrics Considered 
This study measured metrics for mission effectiveness, human 
behavior, and human behavior cognitive precursors in an 
attempt to understand the final outcome of the mission, the 
decisions made and actions taken by the operator, and the 
causes driving those actions and decisions. 

                                                                 
3 In this experiment, the routes within the maze are unknown 

but the locations of objects to rescue are known. 

Figure 4. Human Collaboration in Supervisory Control of Robots. 



We believe that at least one metric from each class is 
necessary to understand team performance. However, we 
recommend for the human behavior efficiency class, both 
attention allocation efficiency and human efficiency in 
conducting mission’s tasks should be measured because they 
represent different aspects of the system. In addition, if the 
mission is composed of tasks of different cognitive nature, 
one human behavior efficiency metric for each task is also 
recommended. For the human behavior cognitive precursor 
class, the number of metrics selected depends on the actual 
research question and experimental setting. For this 
experiment, we measured trust and mental workload because 
both factors can influence human use of automation (i.e., 
robots’ autonomy) [15]. Automation mistrust, which refers to 
over-reliance on automation, occurs in decision making 
because humans have a tendency to disregard or not search 
for contradictory information in light of a computer-generated 
solution that is accepted as correct [16]. This effect is known 
as automation bias.  
We did not measure human behavioral actions separately for 
problem recognition, decision making, and action 
implementation because of the difficulty of distinguishing 
among these three categories in this particular testbed. No 
additional data that could support this analysis was recorded 
during the experiment. 
This experiment did not measure metrics for human 
behavioral physiological precursors because with the 8-
minute session time, these could not provide any meaningful 
insight. Collaborative metrics were also not considered since 
the focus was on single operator control, and robot efficiency 
was also not considered since they were simulated. Table 1 
summarizes the metrics considered in this experiment. 
Performance score, an indication of mission effectiveness, 
was defined as the total number of objects collected minus the 
number of robot lost (i.e., number of robots that did not get 
out of the maze when the 8-minute session expired).  
HCIs were categorized in terms of robot navigation planning, 
robot navigation replanning, and visual search. The metrics 
selected were the time to complete a visual search, the time to 
assign a robot’s destination, and the times to reroute a robot 
and reassign its destination. 
The metric selected for attention allocation efficiency was the 
time required to decide which robot to service next, also 
known as the switching time. This metric included both the 
time it took for the user to decide which robot required his/her 
intervention, and the time required to select that robot on the 
display. 
The frequency of overriding robot decisions was selected as 
an indication of operators’ trust in robots. Finally, a five-point 
Likert scale was used to subjectively measure mental 
workload. 
 
 
 
 
 
 
 
 
 

 

Metric Class Selected Metric 
Mission Effectiveness • Performance score 
Human Behavior 
Efficiency 

• Average time to complete a visual 
search (indication of human efficiency 
in visual search) 

• Average time to complete a robot 
destination assignment (indication of 
human efficiency in planning robot 
navigation) 

• Average time to reroute a robot or 
reassign its destination (indication of 
human efficiency in replanning robot 
navigation) 

• Switching Time (indication of attention 
allocation efficiency) 

Robot Behavior Efficiency None 

Human Behavior 
Cognitive Precursors 

• Frequency of overriding robot decisions 
(indication of over-reliance on robots’ 
autonomy) 

• Subjective rating of operator workload 
(indication of mental workload) 

Human Behavior 
Physiological Precursors 

None 

Collaborative Metrics None 

 

4.3 Mission Effectiveness 
Figure 5 shows the performance score as a function of the 
robot team size. A one-way ANOVA analysis showed that the 
robot team size significantly contributed to its variability (p-
value = 0.018, R2 = 15.31%). However, the R2 of this model 
implies that it explained little of the performance variability. 
The Tukey test showed only difference in workload for 2 
robots as compared to 8 robots.  
Thus, evaluating performance in terms of robot team size does 
not provide much information, which confirms that additional 
metrics are required to really understand what happened in 
this experiment. 

 
 

4.4 Human Behavior Efficiency 
Results suggest that the faster the subject completed a visual 
task, the higher the performance score (Pearson correlation = - 
0.594, p-value < 0.001). Results also suggest that subjects 
who were fast performing the visual search were also fast 
when selecting robot destinations (Pearson correlation = 
0.479, p-value < 0.001).  
Regarding navigation tasks, the average time to complete a 
destination assignment and that required to complete a 
reassignment are not correlated (Pearson correlation = 0.163, 

Table 1. Metrics Measured in the Case Study. 

Figure 5. Performance Score vs. Size of the Robot Team. 
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p-value =0.214). This result confirms that the task of goal 
assignment for initial planning and for replanning were 
distinct. 
Regarding replanning, robot destination reassignment ratio 
and rerouting ratio are strongly correlated (Pearson 
correlation = 0.526. p-value < 0.001), suggesting that subjects 
performed both reassignments and rerouting with a similar 
frequency. Results also suggest that people who were faster in 
the visual search, conducted more rerouting and 
reassignments (Pearson correlation of reassignment frequency 
& time for the visual search = -0.388, p-value = 0.002; 
Pearson correlation of rerouting frequency & time for the 
visual search = -0.345. p-value = 0.005).  
Using an ANOVA model with the number of robots as the 
main factor and the average time to complete a visual search 
as a covariate, we obtained statistical significance for both 
variables (p-values < 0.001). The R2 of this model was 
59.38%, which means that 59.38% of the performance 
variability is explained with these two variables. The Tukey 
post hoc test showed only difference in performance for 2 
robots as compared to the other robot levels. This result 
confirmed the trend seen in Fig.5 and additionally pointed 
that that there was also difference in performance for 2 robots 
as compared to 4 and 6 robots. Including in the ANOVA 
model other variables such as time to replan, or time to assign 
robot destinations did not improve the model. Thus, the 
average time to complete a visual search was the main factor 
driving the performance score. In this analysis, it was 
important to use these additional metrics to confirm our initial 
results and ensure consistency across metrics. 
Regarding attention allocation efficiency, results show a 
strong correlation between performance score and switching 
time (Pearson correlation = -0.533, p-value < 0.001). Thus, 
performance scores tended to be higher with low switching 
times. Interestingly, the switching time and the time to 
complete a visual search are not correlated, which indicates 
that these are two independent sources of performance 
variability (Pearson correlation = -0.098, p-value = 0.441). 
This result demonstrates that the two human behavior metric 
classes (attention allocation efficiency and human efficiency 
in the visual search) are measuring different aspects of the 
system that should be considered separately to understand 
team performance. 

4.5 Human Behavior Cognitive Precursors 
Figure 6 shows that as the robot team size increased, subjects 
overrode fewer robot autonomous decisions. A one-way 
ANOVA analysis of the overriding frequency showed that the 
robot team size significantly contributed to its variability (p-
value < 0.001, R2 = 50.86%). The Tukey post hoc test showed 
only difference in overriding frequency for 2 robots as 
compared to the other robot levels. As task load, which refers 
to the task demands imposed on an operator, increased, users 
decreasingly overrode robot decisions. This result suggests 
that workload was affecting subjects’ pattern for overriding 
automation. 

 
 

Additional investigation is needed to distinguish between 
subjects’ cognitive saturation and subjects’ over-reliance on 
robots. Subjective metrics for trust would allow further 
discussion. Since trust is a purely psychological state, 
subjective ratings are necessary to understand trust issues 
[17]. 
Figure 7 represents the perceived workload as reported by the 
subjects at the end of each scenario, 1 being nothing to do and 
5 being completely overwhelmed. A one-way ANOVA 
analysis of workload showed that the robot team size 
significantly contributed to its variability (p-value = 0.005, R2 
= 18.86%). However, the R2 of this model implies that it 
explained little of the workload variability. The Tukey test 
showed only difference in workload for 2 robots as compared 
to 6 and 8 robots. Subjective metrics are inexpensive and easy 
to administer, however they should be used to complement 
rather than to replace other forms of metrics. 

 
 

4.6 Conclusions from the Case Study 
This case study illustrates the need to measure multiple 
metrics across different metric classes to understand human-
robot team performance, its underlying drivers, and effective 
design interventions.  
In this experiment, analyzing human behavioral actions in the 
context of the tasks allowed us to identify that the visual 
search was the primary task driving the performance score. In 
addition, metrics of attention allocation efficiency pointed to 
an additional source of performance variability, switching 
time. Metrics of human behavior cognitive precursors allowed 
identifying that task load and over-reliance on robots’ 
autonomy are interconnected. However, additional metrics for 
workload and trust that were not recorded during the 
experiment are necessary to distinguish between user 
cognitive overload and automation bias.  

Figure 7. Perceived Workload. 

Figure 6. Overriding Robot Autonomy. 
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One potential drawback to the selection of metrics was that 
we did not explicitly measure behavioral actions in terms of 
problem recognition, decision making, and action 
implementation. Without this information, it is hard to say 
whether additional user support for problem recognition (e.g. 
which robot should I service next?) or decision making (i.e. 
which is the optimal route for this robot if I want to replan?) 
would be a better intervention to improve team performance. 
For interface design, measuring separately these three 
categories is essential because it allows exploring and 
understanding which parts of the mission require additional 
support and which design improvements can be more 
effective to maximize team performance. Measuring the 
complexity of the decisions that compose the mission and its 
workload as well as collecting more in-depth user feedback 
would also provide valuable information about future 
improvements. 
However, problem recognition and decision making are 
highly interconnected and it can be difficult to measure them 
separately. As Klein and Klinger discuss, decision-making in 
complex environments under time pressure seems to be 
“induced by a starting point that involves recognitional 
matches that in turn evoke generation of the most likely 
action” [18]. Researchers should measure the observable 
outcomes of humans’ decisions, and analyze and understand 
the decision process with other techniques such as verbal 
retrospective protocols. 

5. CONCLUSIONS AND FUTURE WORK 
This paper proposes a set of generalizable metric classes to 
consider for the evaluation of human-robot team performance. 
A case study of a single operator controlling multiple robots 
conducting a search and rescue mission illustrates the 
usefulness of measuring multiple metrics across these 
different classes. 
Future work will populate these metric classes with the 
different types of metrics available and link them to actual 
research questions to help experimenters select the set of 
metrics that provide the most value for their experiments. 
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ABSTRACT  
This paper reports on the initial piloting of three instruments for 
studying human-robot teams: team member assessments of 
usability (effectiveness, ease of use, and satisfaction, and team 
compatibility), observer incident logs, and observer ratings of 
team processes. The pilot study was conducted during realtime 
human-robot operations at NIST’s 4th series of rescue robot 
evaluation exercises, held in June 2007 at the TEEX “Disaster 
City” responder training facility in College Station, TX. In 
addition to the initial fielding of the General Robot Usability.  
Questionnaire and the Human-Robot Team Effectiveness 
Incident Log and Rating Scale with participating USAR Task 
Force members, we collected data consisting of video, field 
observations, and interviews. We tested techniques for 
gathering realtime data points on team processes and 
communication, and noted instances of emerging human-robot 
team work practices. Results for the initial pilot of the usability 
questionnaire (n=31 responses) yielded a reliability index of 
.94. The team process incident log was useful in capturing 
spontaneous multi-operator single-robot (MOSR) and multi-
operator, multi-robot (MOMR) collaboration. Observers noted 
instances of all but one of the team process dimensions on the 
Rating Scale; however, contextual and experimental constraints 
prohibited a true pilot of the team process rating scale. The 
paper identifies needed revisions to these instruments. Once 
refined, these instruments will help in training human-robot 
teams, identifying best practices and techniques for human-
robot team performance, and designing future robots that assist 
human teams in accomplishing increasingly difficult, dangerous 
tasks in critical, uncertain environments. 

Categories and Subject Descriptors 
I.2.9 [Artificial Intelligence ] Robotics – operator interfaces. 

J.4 [Computer Applications]: Social and Behavioral Sciences– 
psychology. 

General Terms 
Measurement, Experimentation, Human Factors 

Keywords 
Human-robot interaction, human-robot teams, team process, 

usability, field research methods, measures. 

1. INTRODUCTION 
Team operations in critical environments such as emergency 
response, military operations in urban terrain, and explosive 
ordnance disposal are beginning to incorporate robots and other 
remote presence technologies. As a result, new forms of 
distributed team processes are rapidly emerging and co-
evolving with the accelerating improvements in technology. 
Understanding the relationships between robot activities and 
functions and human team member communications and 
coordination is key to successful human-robot teaming in 
critical environments. Standardized methods or techniques are 
needed to gather meaningful data, which is currently gathered 
ad hoc. 

Developing human-robot team metrics, measures, and 
techniques is challenging for three reasons: no clear description 
of job tasks and activities exists; team roles for humans and 
robots are fluid, as are the protocols and procedures; and, in the 
case of rescuers, there is little variance in expertise across teams 
available for study as responders have little/no access to robot 
technology beyond the scope of these events. These issues are 
not endemic to robot technology, but commonly accompany the 
introduction of a radically new technology into an existing 
work practice. New work practices will emerge for existing task 
activities, and new task activities will be created as the new 
technology’s potential is discovered. 

This paper reports on the initial piloting of three instruments: 
team member assessments of usability (usefulness, ease of use, 
satisfaction, and team compatibility), and observer incident logs 
and ratings of team processes during realtime human-robot 
operations. The pilot study was conducted at the National 
Institute of Standards and Technology’s (NIST) 4th series of 
rescue robot evaluation exercises, held in June 2007 at the 
Texas Engineering Extension Service (TEEX) “Disaster City” 
responder training facility in College Station, TX. Our purpose 
is to develop a toolset of standardized methods, metrics and 
techniques for measuring team processes and performance in 
human-robot teams. It is important to note that while we are 
employing the popular phraseology (referring to the human and 
robot as a team), we do not regard the robot as a team member, 
but as a resource used by the team. Human-robot systems 
currently used for real work are largely teleoperated, with 
low/no autonomy. Until the advances in autonomy/intelligence 
being made are manifested in fieldable robot systems, we shall 
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regard human-robot teams as teams of people using robots as a 
team resource. 

Creation of standardized methods, metrics and techniques for 
investigating human-robot team processes will contribute to the 
development of training protocols for human-robot teams, and 
to the creation of performance evaluation standards for this new 
type of work. Measures created in this task can be applied to 
other efforts that are designed to improve team effectiveness 
through quantifying processes and are thus helpful in 
developing prescriptive teamwork models. The research is 
clearly relevant to coding schemes for activities in near real 
time. It is also relevant to the criterion problem, i.e. developing 
methods of identifying the best mixed team architectures. 

2. RELATED WORK 
Human-robot team metrics is an emerging topic, but current 
work does not yet adequately capture team processes of the 
human(s) and robot(s) working together or propose metrics 
which permit rapid feedback to evolving teams. Our work 
builds on our previous work in team processes by introducing a 
new coding instrument for recording team processes and 
investigating usability as a potential metric for team processes. 
Usability also been applied to human-robot interaction (HRI) 
but not specifically for team processes.  

2.1  Human-robot Team Metrics 
Metrics are a topic of great interest in the growing field of HRI, 
with many designing task or domain-specific measures [1]. 
Several attempts have been made to create a standardized set of 
metrics for HRI [2, 3]. None of these include team process 
metrics.  

Pudenz et al. [1] offer an example of task/domain specific 
measures, as opposed to a standardized set. They considered 
techniques that quantified science team performance working 
with a remote rover robot, leading to an understanding of which 
features of the human-rover system were most effective and 
which features needed further development. Several of these 
variables were metrics and ratios related to the daily rover plan, 
the time spent programming the rover, the number of scientific 
statements made and the data returned. The most successful 
proxies for science effectiveness were the time to program each 
rover task and the number of scientific statements related to 
data delivered by the rover.  

Yanco, Drury, and Scholtz [4] have used techniques similar to 
those presented in this paper to develop guidelines for 
designing interfaces for HRI. They used critical incident 
techniques, questionnaires, and interviews to analyze four 
different robot systems that competed in the 2002 American 
Association for Artificial Intelligence Robot Rescue 
Competition. They analyzed pre-evaluation questionnaires; 
videotapes of the robots, interfaces, and operators; maps of the 
robots' paths through the competition arena; post-evaluation 
debriefings; and critical incidents (e.g., when the robots 
damaged the test arena). 

Our prior work focused on teams working with fieldable robots 
(air, ground, and water) in tasks such as urban search and 
rescue (USAR), explosive ordinance disposal, and mine rescue, 
but the metrics and methods developed to date are labor 
intensive. We have studied team processes using the Robot-
Assisted Search and Rescue Coding Scheme (RASAR-CS) [5-
7]. The RASAR-CS codes communications in terms of 
speaker/recipient, grammatical form, function, and content of 

the communication [8]. While the RASAR-CS is a valuable 
tool for studying HRI in team settings, it is time and labor-
intensive, and can take many months to code a series of 
interactions. More timely metrics are needed. Burke [9] used 
onsite observers to rate team processes (communication, 
leadership, situation awareness, and backup) in high fidelity 
training exercises, and noted that other team process 
dimensions should be studied. 

In the human teamwork literature, there is a vast body of 
research.  In a review of the literature, Salas et. al [10] 
identified  138 different models of teamwork.  In choosing an 
appropriate model for our purposes, three criteria were critical: 
1st, that all components of teamwork be readily observable by 
assessors; 2nd, that the number of distinct components is 
manageable for assessors [11]; and 3rd, that assessments target 
behaviors that could be improved through training. 

2.2 Usability 
Usability testing, a traditional concept in human-computer 
interaction (HCI), can be used as a tool to determine whether a 
particular product or application is viable. If robots are to be 
used in team settings, we must ask whether they can effectively 
be used in a team context. Usability reflects the system’s 
effectiveness, efficiency, and user satisfaction [12]. 

 Several HRI studies have incorporated usability tests and 
measures, notably [4, 13, 14] but these have not addressed team 
processes. In a study comparing various levels of mixed 
initiative robot control, Bruemmer et al. [13] noted that the 
design of HRI and interfaces typically fails to follow basic 
usability principles or be informed by basic concepts of HCI. 
To address both these challenges, they used a development 
cycle of iterative usability testing and redesign to hone both the 
interface and the robot behaviors that supported it. Endo, 
MacKenzie and Arkin [14] used formal usability experiments to 
evaluate a mission-planning wizard into their MissionLab 
mission specification system, testing for usability improvements 
in terms of speed of the mission planning process, accuracy of 
the produced mission plans, and ease of use. Yanco and Drury 
[15] used usability testing, plus implicit and explicit situation 
awareness measurement techniques, to investigate USAR 
operators' levels of situation awareness and strategies for 
maintaining situation awareness. 

2.3 NIST Rescue Robot Evaluations 
As stated earlier, NIST is directly involved in creating 
appropriate metrics of usability for rescue robots. The robot 
assessments conducted by NIST include tests of visual acuity, 
mobility, directed perception, manipulator dexterity, and 
communications. Emergency responders work with robot 
developers in a set of deployment scenarios and NIST-
generated tests to provide data for evaluation of the various 
robot platforms, and feedback on the methods used to generate 
the data. For humans-systems interaction they are developing 
standards related to criteria such as adequacy of initial training 
and proficiency education of operators provided by the robot 
developers. Especially relevant to this discussion is their 
treatment of “acceptable usability”.  They plan to use the 
percentage of tasks a user was able to perform without help as a 
measure of the effectiveness of the robot. Measuring efficiency 
would involve the time to completion for a task. As for user 
satisfaction, they suggest the use of a standardized satisfaction 
survey [16]. However, to the authors’ knowledge, one has not 
yet been developed.   
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3. METHOD 
This section presents both the General Robot Usability 
Questionnaire as well as the Human-Robot Team Incident Log 
and Effectiveness Rating Scale in addition to the field exercise 
and conditions under which they where they were evaluated. 

3.1 Participants and Setting 
The event was NIST’s 4th Response Robot Evaluation 
Exercise, held at the TEEX “Disaster City” facility in College 
Station, TX from June 17-22, 2007. Disaster City is a first 
responder training facility designed to provide wide-area and 
specialty facilities which are difficult to arrange through other 
means. Among its various simulated scenarios, it has rubble 
piles, a multi-story office/parking structure collapse, a 
passenger train disaster, and a simulated hazardous materials 
train derailment. As for the Response Robot Evaluation 
Exercise itself, it was comprised of two distinct phases: first, a 
series of technical capability tests and second, a series of more 
realistic field scenarios. These initial tests were designed to test 
specific sub-components of the individual robot systems, and to 
evaluate NIST’s response robot criteria they were developing. 
These tests included Aerial Station Keeping, Cache Packaging, 
Confined Space, Directed Perception, Mobility/Endurance, 
Grasping Dexterity, Inclined Plane, Random Maze, Radio 
Communications, Stairs, Steps, and Visual Acuity.  The 
scenarios included a structural collapse and two train wreck 
sites. Several groups from the robotic and emergency response 
community attended the exercise. The most important group 
was the first responders who had made themselves available as 
sample operators to help pilot the various measures being 
tested. The measures being tested by NIST had originally been 
requested by DHS, thus the participants were from the FEMA 
USAR teams around the country; represented were Indiana-task 
force 1, California-task force 1, Colorado-task force 1, 
Maryland-task force 1, Nebraska-task force 1, New York-task 
force 1, Pennsylvania – task force 1, Texas – task force 1, 
Virginia – task force 1 , Virginia – task force 2, and 
Washington – task force 1. The robot platforms tested at the 
event were provided directly by the manufacturers, the majority 
of whom had onsite representatives to provide initial training 
and technical support. The final group was government and 
academic researchers comprised of researchers from NIST’s 
Intelligent Systems Division of the Manufacturing Engineering 
Lab, and our team from the University of South Florida’s 
Center for Robot-Assisted Search and Rescue. It should also be 
noted that TEEX is affiliated with Texas A&M Engineering. To 
the authors’ knowledge, Texas A&M Engineering was not 
actively conducting research at the event.  

3.2 Measures 

3.2.1 General Robot Usability Questionnaire 
One of the assumptions in designing the General Robot 
Usability Questionnaire is that the robots are best used in teams. 
Indeed, past research showed that when operators worked in 
teams during a training exercise, they were 9 times as likely to 
find simulated victims [6]. Therefore, the survey is divided into 
two sections. The first section asks about the user’s opinion of 
the part of the robot operated by them. It consists of 4 items 
probing usefulness, 8 items about ease of use, 3 items asking 
about team compatibility, and 2 items concerning affective 
satisfaction. A list of the items, along with their respective 
dimensions for the first section is presented in Table 1. 

 

Table 1. Questionnaire Items and Dimensions for Section 1 

 

Examples of these items include statements such as “The device 
is effective for doing the task”, and “It is easy to get the device 
to do what I want it to do.” The second part of the survey asks 
about the robot as a whole operated by the team. By nature, this 
section is more concerned with usability in a team context. It 
consists of 2 items probing usefulness, 4 items about ease of 
use, 4 items asking about team compatibility, and 2 items 
concerning affective satisfaction. Items included statements 
such as “The device is effective for accomplishing our 
mission”, and “When using the device, it is hard for each team 
member to know what the others are doing.” Items on both 
sections of the questionnaire are measured on a 1-5 Likert scale 
ranging from 1 (strongly disagree” to 5 “strongly agree.” A “not 
applicable” category is included adjacent to the rating scale. A 
list of the items, along with their respective dimensions for the 
second section is presented in Table 2. 

 

 

 

 

 

 

 

 

 

 

 

 

Item Dimension 

 The device is effective for doing the task Usefulness 

The device’s visual display tells me everything I need 
to know 

Usefulness 

 The device allows me to do the task better than I 
could with other means 

Usefulness 

 I am satisfied with what it can do Satisfaction 

 I found using the device frustrating (reverse-scored) Satisfaction 

 The device is easy to control Ease of Use 

 The controls are designed logically and make sense Ease of Use 

 The device’s visual displays are easy to understand Ease of Use 

The device is prone to technical difficulties and 
malfunctions (reverse-scored) 

Ease of Use 

 Learning how to use the device was easy.  Ease of Use 

 It is hard to make out what I’m seeing in the visual 
displays (reverse-scored) 

Ease of Use 

The design of the system makes it easy to understand 
what's going on with the device 

Ease of Use 

It is easy to get the device to do  what I want it to Ease of Use 

During use, it is easy to know what my teammate(s) is 
(are) doing  

Team 
Compatibility 

During use, it’s easy to communicate with my team 
member(s)  

Team 
Compatibility 

 During use, it is easy to coordinate my actions with 
my team 

Team 
Compatibility 
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Table 2. Questionnaire Items and Dimensions for Section 2 

 

3.2.2 Human-Robot Team Incident Log and 
Effectiveness Rating Scale 
In order to guide observations of teamwork in human-robot 
teams, we created a structured incident log and team 
effectiveness rating scale based on the team process taxonomy 
described by Dickinson and McIntyre [17]. In their taxonomy, 
teamwork is comprised of seven core components: backup 
behavior, communication, coordination, feedback, leadership, 
monitoring, and team orientation (see Figure 1).  

In the model, team orientation refers to the interpersonal 
cohesiveness of the team, while leadership refers broadly to 
efforts to organize the team's actions, such as dividing roles and 
agreeing on a task strategy.  Monitoring refers to teammates' 
awareness of one another's performance, which can lead to them 
offering feedback about each others' performance and/or  

 

offering to backup a teammate that is struggling.  Coordination 
refers to the team's acting in concert with one another, which is 
dependent on their monitoring, feedback, and backup behavior.  
Communication among team members serves to link 
components, as when one team member monitors another's 
activities and uses communication to give feedback based on 
that monitoring.  In our incident log, all of the above 
components are assessed except monitoring, which refers to 
teammate mental states that are very unlikely to be observable 
by an assessor.   

For each team, an assessor kept a log of instances in which they 
observed the team demonstrating one of the teamwork 
components.  Specifically, the assessor noted the time of 
occurrence, and then assigned a rating on a 1-5 scale of how 
well the behavior enhanced the team's effectiveness, with 1 
representing behavior that significantly impaired team 
performance and 5 representing behavior that significantly 
enhanced team performance.  Here, team performance refers to 
how well the team functioned together.  It is considered 
separately from task performance, which is expected to be 
impacted by team performance but is also dependent on chance, 
individuals' skill, etc.   

The assessor then specified who the agent of the behavior was, 
e.g. robot operator or mission specialist.  Finally, the assessor 
noted which component of teamwork was demonstrated and 
what specific task the teamwork was directed towards, e.g. 
navigation, object identification, or search strategy.  If two 
components were evident in a single incident, the assessor used 
their judgment to decide which component was most salient and 
assigned the incident to that component.  Assessors are only 
asked to note incidents that they believe significantly impaired 
or enhanced the team's functioning.  The intended outcome is a 
small set of significant incidents; as such, the assessor isn't 
overwhelmed with the task of logging every utterance made by 
a team member, and post-mission analysis and feedback can be 
focused and prompt.  

Upon completion of each team's session, the assessor made an 
overall assessment of how effective the team was in each of the 
teamwork components, as well as their overall quality of 
teamwork and task work.  These overall effectiveness ratings 
are not intended as a mathematical derivation from the number 
or quality of teamwork incidents observed during the session, 
but rather are based on the assessor's overall impressions of the 
team.   

For both the incident log and rating scale, assessors were 
trained on general behavioral anchors for each process and each 
rating value, a copy of which is also available to them during 

Item Dimension 

The device is effective for doing the task Usefulness 

The device’s visual display tells me everything I need 
to know 

Usefulness 

The device allows me to do the task better than I 
could with other means 

Usefulness 

I am satisfied with what it can do Satisfaction 

I found using the device frustrating (reverse-scored) Satisfaction 

The device is easy to control Ease of Use 

The controls are designed logically and make sense Ease of Use 

The device’s visual displays are easy to understand Ease of Use 

The device is prone to technical difficulties and 
malfunctions (reverse-scored) 

Ease of Use 

Learning how to use the device was easy.  Ease of Use 

It is hard to make out what I’m seeing in the visual 
displays (reverse-scored) 

Ease of Use 

The design of the system makes it easy to understand 
what's going on with the device 

Ease of Use 

It is easy to get the device to do what we want it to Ease of Use 

During use, it is easy to know what my teammate(s) is 
(are) doing  

Team 
Compatibility 

During use, it’s easy to communicate with my team 
member(s)  

Team 
Compatibility 

During use, it is easy to coordinate my actions with 
my team 

Team 
Compatibility 

Figure 1. Dickinson and McIntyre’s (1997) Team Process Model 

 

C o m m u n i c a t i o n   C o m m u n i c a t i o n   C o m m u n i c a t i o n 

T e a m  O r i e n t a t i o n 

T e a m  L e a d e r s h i p 

M o n i t o r i n g  

F e e d b a c k 

B a c k u p 

C o o r d i n a t i o n 

L e a r n i n g  L o o p  

I n p u t  
o o p  

T h r o u g h p u t  O u t p u t  
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the assessment.  These descriptors were written to be easily 
understood and general enough to apply across different robot 
platforms and task domains. 

3.3 Procedure 
During the first two days of the event, the robots where cycled 
through the technical capability test (visual acuity, mobility, 
etc). The first day this was done by the vendors, and the second 
day, by the USAR responders. The first day allowed the 
vendors to become familiar with the tests and for the NIST 
teams to make sure the tests were set up appropriately. During 
the second day, robots were stationed at a given test and pairs 
of responders were cycled between the stations to give them 
training and exposure to all the various robots, and for the 
collection of a broader data set for a given robot/test pairing. 
During the second two days of the exercise the robots were 
stationed in small groups at one of the three scenarios, and the 
responder pairs rotated between the scenarios. The usability 
questionnaire was presented to the responders after each of the 
technical test sessions, as well as after each disaster scenario. 
As many of the technical tests were more to evaluate the robot 
hardware, rather than any team dynamics or coordination, 
portions of the usability questionnaire were not applicable in 
these case; the operators direct usability opinions of the system 
itself were still useful however. Occasionally we were unable to 
collect responses from individuals directly after a session; these 
missing responses were collected at the end of the event during 
the final hotwash (after-action meeting). As the incident log and 
rating scale was entirely focused on team interaction, the 
measure could only be employed during the larger scenarios. At 
each scenario one researcher took field notes and filled out the 
incident log, rating scale, and usability questionnaire at the end 
of each session. The second and third researcher on each team 
(we split into two teams of three) served as videographers for 
the session. One video taped the team itself and the second 
camera tracked the robots through the exercise (so that robot 
performance and operator mental models could be verified and 
correlated). 

4. RESULTS 
Results are reported from the piloting of the three instruments 
described in Section 3 during the NIST robot evaluation tests 
and scenarios. The initial pilot of the usability questionnaire 
(n=31 responses) yielded a reliability index of .94. The team 
process Incident log was useful in capturing spontaneous multi-
operator single-robot (MOSR) and multi-operator, multi-robot 
(MOMR) collaboration. Observers noted instances of all but 
one of the team process dimensions on the Rating Scale; 
however, contextual and experimental constraints prohibited a 
true pilot of the team process rating scale. 

4.1 General Robot Usability Questionnaire 
The initial piloting of the usability questionnaire yielded mixed 
results, in that the usefulness, ease of use, and satisfaction items 
tested well, but the team compatibility items and second survey 
section were often skipped due to contextual and experimental 
constraints. The usability questionnaire (n=31 responses) 
yielded an acceptable index of reliability for the questionnaire 
overall (α = .94), usefulness (α = .85), satisfaction (α = .72), 
and ease of use (α = .87) dimensions. Note that these 
reliabilities do not include the second part of the survey or the 
team compatibility items, since contextual constraints prevented 
collection of an adequate amount of data for those items. The 

lower reliability index for satisfaction is likely due to having 
fewer items representative of that dimension.   

We collected 31 questionnaires from 11 different responders 
using 10 different robot platforms in two of the NIST robot 
evaluation tests (manipulator dexterity and maze) and three 
responder scenarios (passenger train, HazMat train, and 
collapsed parking structure). Questionnaires were administered 
and collected immediately following the NIST robot evaluation 
tests, but this was not easily accomplished during the responder 
scenarios. The teams of responders typically worked at a 
scenario steadily until a hornblast sounded, signaling them to 
move to the next scenario and leaving them little time to 
complete the survey. (Not to mention the difficulty of wielding 
pencil and paper outside with few places to do so comfortably.) 
Instead, some responders completed the questionnaires during 
the afternoon hotwashes held late in the day, after the scenarios. 
This means there were time differences in when the 
questionnaires were filled out, and in the case of those 
completed after the scenarios, responders had in all likelihood 
used several different robots during the course of the day. They 
were asked to fill out separate questionnaires for each robot 
they used, but many felt they could only respond accurately 
about a few, saying that they did not have enough time with a 
particular robot to form an opinion. Furthermore, since the 
purpose of the exercises was primarily to give the responders a 
chance to practice using the robots, conditions were not 
controlled such as in an experiment. Thus, influence from 
developers varied greatly between trials. Therefore, the data 
from the scenarios is not presented here. 

As stated earlier, one assumption underlying the survey design 
was that operators would be working in teams to operate one 
robot: this was not always the case. Data collection during 
manipulator dexterity training with the Telemax Unmanned 
Ground Vehicle (UGV) (n= 11) was typically from a single 
operator operating the robot. The Manipulator Dexterity Test 
was designed to measure the operator’s ability to remotely 
grasp blocks and place them on different shelves of varying 
height. As with other methods, the main difficulty with using 
the test is that performance is both a function of the operator’s 
ability and the capabilities of the robot. During the training, 
participants worked individually with the Telemax to practice 
grasping and moving objects. After having a chance to try out 
the Telemax, participants were asked to complete the usability 
questionnaire. However, since the robot was operated 
individually, participants did not fill out questions relating to 
using the device as a team. Therefore, no information was 
attained regarding the impact on team activities.  

In general, the Telemax was rated as usable for the Manipulator 
Dexterity Test. The dimension scores of 4.1 for usefulness, 3.9 
for ease of use, and 3.9 for satisfaction suggest that the 
participants agreed that the Telemax was usable. Note that the 
Telemax was chosen by NIST for training on the Manipulator 
Dexterity Test because it performed well when used by an 
expert operator. Thus, the general agreement between the 
usability ratings and objective performance on the task suggests 
that the items reflect usability.   When examining individual 
items, it seems that responders thought it was effective and had 
useful, easy to understand visual displays. On the other hand, 
there was some disagreement about ease of operating it and ease 
of learning how to use it. However, it is important to note that 
the robot developer was present during the training (indeed, he 
conducted the training), and therefore responses may have been 
biased by this fact. 
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Our field observations of responders as they used the Telemax 
in this test suggest that operator experience, spatial ability, and 
technical knowledge may also influence the user’s perceptions 
of usability. At a minimum, operator experience must be 
accounted for. Differences in the degree and type of interface 
feedback about the status and activity of the robot influenced 
responder perceptions of usability. For example, when 
operating the Matilda, the developer told the operator that a 
common mistake is that people forget that they are looking at 
the manipulator view. If the manipulator is not positioned 
straight and they think it’s the main camera view, they will tend 
to drive crooked. Responders noted that a quad view or some 
other indicator of which camera view is being used would be 
helpful. 

The nature of the task activity may also influence user 
perceptions of usability, in that differences may reflect whether 
the task is an existing one that could have been performed 
without a robot, or a new task that was previously not possible. 
In an instance that occurred with the Dragonrunner UGV at the 
Passenger Train scenario, the robot operator discovered that a 
wheel had fallen off only after another responder went into the 
train to locate a mannequin part. When searching for the part, 
he found the Dragonrunner’s missing wheel. Team members 
treated this as they would a tool malfunction, i.e., it was not 
seen as a major flaw. A similar instance occurred with the 
Active Scope, a long, tubelike platform (shown in Fig. 2) that 
could go into very small voids previously inaccessible to 
responders. When using the robot, the operators thought they 
were making forward progress because they were able to insert 
more of the robot into the void. It turns out that the robot was 
simply coiling around in circles. Responders expressed 
misgivings about missing important information due to lack of 
feedback, but acknowledged the value of gaining a new method 
of access to confined spaces. 

 

Figure 2. Operators use the Active Scope to explore a small 
void in the wall of a collapsed parking structure. 

4.2 Human-Robot Team Effectiveness 
Incident Log and Rating Scale 
As with the usability questionnaire, the results of the pilot tests 
for the incident log and rating scale yielded useful information 
in spite of the difficulties encountered in gathering data. The 
team process incident log was useful in capturing spontaneous 
multi-operator single-robot (MOSR) and multi-operator, multi-
robot (MOMR) collaboration, but was physically unwieldy, 
involving multiple pages for a single scenario. Observers noted 
instances of all but one of the team process dimensions on the 
Rating Scale.  

Conditions at this exercise were not ideal for observing 
teamwork between rescue personnel. Efforts to collect team 
process data during NIST’s robot evaluation tests the first three 

days were unsuccessful. The robot developers were usually 
present, sitting with participants and guiding their actions or 
simply demonstrating the robot without allowing participants to 
operate them. The work domain of search and rescue is very 
difficult, dangerous, and stressful, as rescue personnel race 
against the clock in unstable and low-visibility environments to 
find trapped victims. Such work demands teamwork for safety, 
emotional support, and maximum performance. However, the 
scenarios in this exercise were relatively simple and involved 
none of the dangers or time pressures inherent to search and 
rescue. Further, many participants had not been trained to 
proficiency on the robots, so much of the time in scenarios was 
dedicated to basic training on robot operation. This is not an 
exception to the rule; despite the fact that the responder 
community, government, and public all see robot technology’s 
potential value in future response operations, this community 
(emergency response) does not have the sustained access to 
these technologies necessary to train and practice to an 
acceptable level of proficiency. 

While teamwork was not encouraged or facilitated at this 
exercise, we nonetheless observed incidents of teamwork with 
both multiple operator-single robot (MOSR) teams and multiple 
operator-multiple robot (MOMR) teams. One factor that may 
have influenced the emergence of spontaneous teamwork is the 
amount of physical coordination needed to operate a given 
robot. For example, the Active Scope robot resembles a rope 
and has a camera at the front end. The front end of the robot’s 
movements can be controlled using the operator control unit 
(OCU). However, the back end of the robot needs to be 
manipulated manually. As such, teams tended to have one 
person observing and operating the OCU while another person 
would manually manipulate the back end of the robot. The 
physical coordination and cooperation needed to operate the 
robot stimulated the frequency of communication between the 
team members. When using the Active Scope, there was an 
instance when it was getting hung up. The person observing the 
OCU was trying to explain to the team member manually 
operating the back end what he was seeing. The team member 
manually operating the back end wanted to be sure he 
understood correctly, so he found a rock on the floor and etched 
a picture on the concrete to confirm his understanding of the 
OCU operator’s description. This instance provided clear 
examples of backup, communication, and coordination in the 
incident log for that session. It also demonstrates how a second 
view for the manual operator would have been effective in 
helping the team establish common ground. An example of the 
multiple operator-multiple robot paradigm was observed when 
teams decided to deploy a Dragonrunner along with a Packbot 
UGV to search the inside of a passenger train for victims. The 
Dragonrunner robot operator offered to act as a spotter for the 
Packbot operator and his teammate, providing examples of 
leadership and backup behavior. Additionally, the 
Dragonrunner operator gave the Packbot operator feedback 
about the thoroughness of his search, noting that the Packbot 
had missed a searchable void. The Packbot operator 
acknowledged his teammate and adjusted his search 
accordingly (coordination). Without the teammate's help, it is 
doubtful that the Packbot operator would have conducted a 
thorough search of the mission space. Regarding the incident, 
the Dragonrunner operator remarked, "Redundancy: it's a 
beautiful thing." 

In another multiple operator-multiple robot scenario, a 
participant controlled a Matilda UGV to investigate a HazMat 
train wreck while another participant (AirRobot operator) used 
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a Heads-Up Display (HUD) to direct and receive feedback from 
an AirRobot unmanned air vehicle (UAV), which was 
teleoperated by an AirRobot vendor acting as UAV pilot. The 
AirRobot operator offered to share his view with the Matilda 
operator, who had become lost; in the team process taxonomy, 
this would be classified as coordination and backup behavior. 
The following transcription captures a moment of emergent 
teaming:  

Airbot Operator: (offering HUD to Matilda Op.) Here, do you 
want to see this video at the same time? 

Matilda Operator: (laughing) Don't screw me up. 

(general laughter) 

Airbot Pilot: Ok, but I can see you down there. I can hear you 
crawling. 

Airbot Operator: There, you're going. You're following the train 
car.  

It would appear that the Matilda operator rejects the offer 
because he is already in visual information overload (he was 
lost), and can't watch any more video. Realizing this, the 
AirRobot Operator puts the HUD back on and instead begins to 
talk his teammate through localizing himself (and they keep up 
the auditory collaboration through much of the session). 

5. CONCLUSIONS/ 
RECOMMENDATIONS 
A set of three instruments designed to capture human-robot 
team processes and team member assessments of usability 
(effectiveness, ease of use, satisfaction, and team compatibility) 
was piloted at the NIST Robot Evaluation Exercise held in 
June, 2007 in “Disaster City”, a high fidelity emergency 
response training facility in College Station, TX. The primary 
finding was that operators worked in teams of 2-3 to perform 
robot-related task activities, even when (or in spite of) 
circumstances and contextual conditions were oriented toward 
single operator-single robot configurations, as was the case for 
many of NIST’s robot evaluation tests. We were not able to 
document enough instances of team processes to report 
meaningful findings on the team process instrument, but the 
observations/experiences collecting the data provided important 
information for improving techniques to study human-robot 
teams. 

Initial administration of the instruments revealed several factors 
to be considered during revision: 

• Paper instruments are unwieldy and difficult to complete 
immediately after a robot operation due to the nature of the 
context. 

• The questionnaire does not account for operator experience, 
different team configurations (SOSR, MOMR) and level of 
coordination required. 

• Responses may differ depending on whether the team is 
performing a task that has previously be done without robot 
technology, or a new task/activity that using the robot has 
afforded. 

• Particularly for brief scenarios, not all teamwork categories 
will be apparent. Rather than asking the rater to give overall 
ratings on such categories, a "not observed" option needs to be 
available. 

 

Figure 3. Responder (AirRobot Operator) wearing the 
AirRobot’s Heads-Up display offers to spot for the Matilda 
robot operator (seated to the left). The AirRobot pilot (far 

right) watches the OCU display as others observe. 
 

 In addition to the revisions noted above, we plan to transition 
the instruments piloted in this report to a tablet PC format. One 
benefit of a tablet PC format is that it could allow the rater to 
make notes "on the fly" about infrequent but relevant 
occurrences that do not fit in the team process scale, such as the 
addition of a new team member. Raters could fluidly select 
from different rating modes to create a very descriptive 
narrative.  

Based on the lessons learned from these proto-studies, we 
conclude that the toolkit of methods and techniques currently 
under development requires a dedicated physical testbed where 
experimental and contextual factors can be controlled and 
standardized. Moreover, access to teams that use robots as part 
of their normal work practices is needed to assure variance in 
experience levels and performance. This suggests studying 
military and civil explosive ordinance disposal teams, currently 
the only such user group, to inform the development of 
effective USAR human-robot teams. To understand and 
promote the most effective human robot team work practices, 
methods for both MOSR and MOMR must be explicitly studied 
and developed. These methods and techniques will 1) provide 
quick feedback to team members; 2) give leaders objective 
information on how to best leverage robot technology in the 
workplace (e.g., effects upon existing team work practices, what 
new practices emerge) based upon valid, reliable measures; and 
3) serve as a source of relevant user data to researchers, robot 
designers, and the HRI community. 

These outcomes will help human-robot teams in critical 
environments such as natural or manmade disasters function 
more effectively, thus enabling them to reduce loss of life in 
these events. It will also help human-robot teams in less critical 
environments by shedding light on the challenges posed by new 
technology insertion, and the models/procedures that emerge to 
effectively incorporate new technologies into distributed team 
systems. 
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ABSTRACT 
The field of human-robot interaction (HRI) has been around in 
some for or another for some time.  Recently there has been a 
push for systematic analysis methods and metrics that can be 
used to evaluate research in HRI. The challenge with 
developing metrics for the field of HRI is that the field is so 
broad---ranging from social robots to toy robots, from military 
robots to therapeutic robots with different areas of importance 
for each type of robot.  Prior proposals of taxonomies and 
metrics have resulted in well defined but narrowly scoped 
solutions. The purpose of this paper is to provide a simplified 
framework that allows the general classification of different 
human-robot interaction experiments such that appropriate 
comparisons can be made between experiments from different 
researchers.  Furthermore, we discuss two common metric 
classes: evaluations of the task objective and human 
involvement, and the often overlooked metric class of 
reliability measures which can all be used to categorize the 
results from various HRI experiments and provide insight into 
what needs to be done with the field of HRI as a whole. 

Categories and Subject Descriptors 
I.2.9 [Artificial Intelligence]: Robotics – Autonomous vehicles, 
operator interfaces, sensors.  

General Terms 
Algorithms, Measurement, Performance, Design, Reliability, 
Experimentation, Human Factors, Standardization, Verification. 

Keywords 
Framework, evaluation, human-robot interactions, performance, 
metrics, reliability. 

1. INTRODUCTION 
The field of human-robot interaction has been around in some 
form or another for some time [7]. Most of the research to date 
has been performed by independent research groups who 
develop their own set of metrics and measures of performance 
for evaluating the success of the robot system.  Only recently 
has there been a real impetus for systematic analysis methods 
and tools that can be applied to robotic systems and used across 
domains.  
The challenge with attempting to design metrics for human-
robot interaction, is that the field is so broad, making it difficult 
for any one set of metrics to support generalized comparisons 
across domains. For instance, the field of HRI involves 
interactions with technology ranging from “toy” robots to 
military robots, and from humanoid personal assistant robots to 
vacuum cleaning robots, or from robots that comfort people to 
those that are designed to keep them out of harms’ way. Each 
of these robot systems will have different performance metrics 
for evaluating their usefulness, helpfulness, playfulness, 
inspiration, entertainment value, etc.  Moreover, while some 

robot systems may rate well with one set of evaluations, they 
may not rate well with another yet still be valuable to the 
purpose for which it was designed. 
The challenge is to develop a methodology for considering 
human-robot systems that supports, rather than restricts the 
broad development of human-robot interactions and robot 
technologies, but also allows a means for evaluating research 
and making meaningful comparisons between the different 
research approaches and solutions over such a broad field. 
While there have been proposals for taxonomies [32] and 
metrics [28] for HRI, these are often cumbersome and difficult 
to implement because they address the details of a particular 
area of research and are generally not flexible to encompass a 
larger variety of research and conclusions.  In contrast, we are 
looking for a framework that is simplified and supports a 
general understanding of the differences between experiments 
without defining the nitty-gritty that is so often institution and 
experiment-specific. 
At the Idaho National Laboratory (INL) our human-robot 
interaction research has focused primarily on the use of robots 
as tools that can effectively help first responders, soldiers, and 
other individuals involved in emergency response and other 
critical, hazardous endeavors. To develop the technologies 
correctly required numerous user studies of differing types and 
situations including simulation, the physical world, different 
environments, different tasks, and participants with varying 
levels of prior knowledge regarding the task and use of robots. 
All the different experiments were required because each led to 
new insights about how people view and use robots. 
For instance, some experiments involved participants who were 
complete novices at the domain of interest and use of robots, 
while others knew the domain but had never used robots and 
still others had used robots to accomplish tasks within their 
domain of expertise. Without such a wide variety of 
experiments, it would be difficult to develop a robust and 
reliable system that had sufficient capabilities for an end-user 
but also necessary simplicity such that domain-users could 
apply the robot to their domain without the requirement of 
understanding all the nuances of the robot system and, in effect, 
being a robot expert.  
While it is understood that not all research institutions are going 
to be able to systematically answer every question related to the 
development of human-robot interactions, it is beneficial to 
provide a framework where the contributions of one group can 
benefit other groups and as a community the complete picture 
can be established. 
Therefore, the purpose of this work is to identify relevant issues 
and associated questions that can be used to address the 
categorization of human-robot interaction evaluations which 
can then be used for framing correct comparisons.  To that end, 
this paper will present a loose framework that can be used to 
frame human-robot interaction evaluations and measurements 
into simplified categories based on the purpose of the robot, 
what is being evaluated, and the prior skill of the participants. 
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We will then illustrate how previous human-robot interaction 
experiments fit into the framework of experiment 
categorization.  Following this discussion we will review the 
measures of performance from the experiments and categorize 
them into two common metric classes that measure human 
involvement and task performance and we will discuss the often 
overlooked metric class of reliability. 

2. FRAMING THE EVALUATION OF 
HUMAN-ROBOT INTERACTIONS 
One of the challenges with the field of HRI is that the research 
area is so broad that it is difficult to define metrics or 
taxonomies that are relevant for a broad area, yet specific 
enough to make meaningful comparisons between different 
research solutions from different institutions. 
In order to properly frame the evaluation of human-robot 
interactions, it is important that we ask the right questions 
regarding the purpose for which the robot was designed, built, 
and tested.  To accomplish this, we have identified three 
general areas that should be addressed when discussing human-
robot interaction evaluations: What is the overall objective of 
the robot in the experiment? What are the types of participants 
that can be used to evaluate the system? And, what, about the 
system, is being evaluated? 

2.1 What is the overall objective of the 
robot? 
The purpose of this question is to separate experiments that are 
focused on the social aspects of human-robot interaction (e.g. 
museum tour guides, playmates for children, therapeutic 
assistants) with those that are used more as tools to accomplish 
tasks that could be dull, dirty, or dangerous to humans so that 
adequate comparisons within the categories of social robots and 
“tool-based” robots can be made. 

2.1.1 Social interaction 
Cynthia Breazeal provides an excellent discussion on what it 
means to be a “social robot” [3]. She defines a social robot as 
“[one] that people apply a social model to in order to interact 
with and to understand.” She also notes that social models are 
generally applied by humans to explain, understand, and predict 
the behavior of complex non-living things that act 
autonomously (also see [25]). Indeed the term “social” has 
changed over time to become more associated with 
anthropomorphic social behavior [3], [12]). Breazeal goes on to 
point out a few characteristics of social robots including:  

• Socially Evocative: Encourages people to anthropomor-
phize the technology in order to interact with it. 

• Socially Communicative: Uses human-like social cues and 
communications to facilitate interactions with people. 

• Socially Responsive: Perceives human social cues and can 
benefit and learn from people. 

• Sociable: Socially participative robots with their own 
internal goals and motivations. 

A very brief set of examples of work with social robots include 
Kismet [2], a wedding photographer [8] , robots in 
classrooms [30] museum tour guides [31] and therapeutic 
assistants [17]. 

2.1.2 Tool 
One definition of a robot that is used as a tool is one that is used 
to perform tasks that are dull, dirty, or dangerous to humans.  In 
general, the operator does not really care about the robot as an 

individual rather he or she just wants to get the job done.  While 
humans may attribute anthropomorphic qualities to robots that 
are used as tools, the robot is not necessarily designed to 
support the qualities of social interaction. Some examples of 
work with robots as tools includes search and rescue [20], 
SWAT teams [16], military [19], and space exploration [1]. 
It should also be noted that sometimes a robot solution will 
cross the boundaries between the social and tool classification, 
especially in domains where the robot is used in a challenging 
environment, but as part of a team requiring adequate social 
models to understand what each of the team members are doing 
and where the information relies.  Some examples of research 
where the experiments could have both tool and social elements 
include the integration of robots into a search and rescue task 
force [6]. 

2.2 What is being evaluated? 
Once we know the overall objective of the robot, we can then 
focus on what the experiment is evaluating. Experiments are 
generally designed to answer some hypothesis regarding the 
usefulness of different conditions of the interaction, whether it 
is the algorithms, the interface, control mechanisms, 
environment, robot, or communications.   
One of the biggest challenges with human-robot interactions is 
that there are so many variables that affect the human-robot 
system that it quickly becomes intractable to empirically test all 
combinations and tease out true differences between solutions. 
When we review the literature, we also see that many 
experiments are evaluating different aspects of the system, so it 
is difficult to determine if one experiment can or should be 
compared to another experiment. To classify experiments with 
respect to what is being evaluated, we present five categories of 
evaluations: algorithm; component; sets of components; 
system; and sets of systems. 
2.2.1 Algorithm 
Algorithm evaluation is used to prove that a particular and 
fundamental algorithm is working correctly and to gain a better 
appreciation of the limitations and capabilities of the algorithm.  
In order to make effective human-robot interactions, there are 
countless possibilities of algorithms that could be evaluated, 
tested, and proven.  Moreover, an appropriate understanding of 
the limitations of the algorithm will enable the operator to know 
where they should focus their efforts to improve the system. 
Some examples of research that might fit in this category 
include algorithms for feature extraction, path-planning, 
information visualization, or obstacle avoidance. 
2.2.2 Component 
The component level of evaluation includes tests that compare 
the value of multiple algorithms combined into a solution for a 
larger problem such as how information should be displayed on 
the interface, which robot behavior works best, or which 
interaction mode is most efficient. To correctly design an 
experiment evaluating components of the human-robot system. 
All aspects of the system except the part in question should 
remain constant. For example, if we were considering different 
interface designs (positioning of map and video or 2D interface 
vs. 3D interface), we should keep the robot behaviors (e.g. 
guarded motion), robot, environment, and interaction mode 
(e.g. joystick) the same. If we were comparing different robot 
behaviors, we should keep the robot, the interface, the 
environment and the command interface the same while only 
modifying the robot behaviors. 
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2.2.3 Set of Components 
In human-robot interactions, it is simply unrealistic to evaluate 
all the different component comparisons because there are so 
many different components related to the full system. What 
adds more to this challenge is that sometimes individual 
components are related to each other in terms of performance 
and usability.  For example, one particular interface design 
might be better than others for one set of robot behaviors, but 
for another set of behaviors, a different interface design might 
be better.  
While some may criticize experiments that modify multiple 
aspects of the human-robot interaction, if the changes are done 
systematically and the experiment is designed appropriately, we 
can still gleam valuable results.  For these types of experiments, 
the things that remain constant include the robot itself, the 
communications from the robot, and the environment. One of 
the limitations of these experiments is that it would be unwise 
for the experimenters to make claims regarding the efficacy of 
an individual component because the effects of individual 
components are affected by the full set of chosen components. 

2.2.4 System 
While evaluating sets of components provides insights that may 
lead to a best case solution for a single robot system it does not 
provide the framework for comparing one complete robot 
system against an entirely different robot system.  For that 
reason, the next set of experiments evaluates complete HRI 
systems which include the robot, behaviors, communications, 
interface, and control capabilities.  An example of this approach 
would be to compare the iRobot PackBot with the Foster-Miller 
Talon where each robot is operated with its own operator 
control unit and its own communications.  Proper experiment 
design would entail that while nearly everything about the 
robots may be different, the task and the environment should 
remain the same.  This type of experiment is particularly 
valuable at determining which robot system is best for certain 
tasks and environments as well as determining the limitations of 
systems. It is also useful to determine if “innovations” have 
actually improved the state-of-the-art.  

2.2.5 Set of Robot Systems 
Once a full system has been evaluated, the next set of 
experiments involves the use of multiple systems. While that 
may (or may not) seem like a simple step forward, this set of 
experiments includes a large variety of experiments that can 
include one or more operators and one or more robots of 
potentially differing capabilities. Yanco and Drury discussed a 
taxonomy related to the various possibilities of multiple-human 
multiple-robot interactions [32]. For the purpose of framing 
experiments it suffices that the experiment could be classified 
as evaluating a set of systems if there is more than one robotic 
system in place.  Others have worked on how to address the 
evaluations of multiple agent systems from an HRI 
context [10, 23]. 

2.3 Who are the participants? 
With an understanding of the purpose of the robot and what 
exactly is being evaluated, the next set of classifications is 
based on the types of participants used for an experiment.  
Pedahazur and Schmelkin describe many of the pitfalls in 
research related to selection and handling of study 
participants [24]. Their admonishment to select the right 
subjects is essential because novices and experts do not perform 
the same [15]. When evaluating reports on human-robot 
system, participants come from a varied set of backgrounds and  

 
experience with robots or other related technology such as 
remote control cars or airplanes. The purpose of this section is 
to help differentiate between the types of participants that may 
be involved in experiments. The very general classification of 
experiments can be broken down into two primary groups: 
those with and without participants.  For the category of those 
with participants, the characterization of participants is often 
separated broadly into experiments with novices (e.g. students, 
the public) and experts (e.g USAR, Military).  However, as 
robots are introduced into fields where personnel have different 
levels of training with robots as applied to their domain, we 
again come to the question of novice versus expert, but this 
time with respect to the end-user’s experience with robotics.  
Experimental design and debriefing must carefully distinguish 
between the various kinds of end users and the different levels 
of user experience. All so called “subject area experts” are not 
created equally. In fact, in a recent study with radiological 
hazard detection, three different groups of subjects were 
involved including personnel with robot operation and dirty 
bomb response training; those with only dirty bomb response 
training and those subjects with general training with radiation 
detection. In the experiment, treating these users as if they were 
all the same would have been an unfortunate mistake since 
certain features of the robot behaviors and interface were used 
very differently and, in fact, during analysis user experience 
turned out to be a significant factor. When evaluating robotic 
systems there are two types of experts that should be addressed: 
domain experts and robot experts. The types of participants 
with the varying levels of expertise are shown in Table 1 and 
discussed below. The table and some of the following 
discussion were presented previously [21]. 
It is understood that for some domains (e.g. social robotics) it 
may be difficult to distinguish between participants that do and 
do not have domain expertise. In these cases, there may be 
differences between people who have used the robot previously 
and have some sense of the robot and how to interact with it, 
and those who have not interacted with a robot previously. 
These differences in participants should be noted in experiment 
reports. 
In situations that do require domain knowledge such as search 
and rescue or explosive ordinance disposal, it is important to 
understand the domain expertise of the participants and how 
their robot expertise helps clarify how their data should be used 
and interpreted. The following discussion relates to the four 
combinations of robot and domain expertise.  We present the 
discussion in progressive order from the “Robot-No Domain” 
category counter-clockwise to the “Robot-Domain” category.  
This also represents the order of experiments that we believe 
leads to technologies and experiments that are best suited to 
apply to domain experts. 
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2.3.1 Robot – No Domain 
Members in this group include the robot developers and 
engineers who are intimate with the workings of the robot and 
capabilities, both realized and potential, but not necessarily 
knowledgeable with the domain or how robots should be 
applied to the domain. This group of users could be considered 
an early pilot study group because their efforts are to make the 
robot work how they think it should and to respond to requests 
and suggestions from participants in other experiments. 

2.3.2 No Robot – No Domain 
Members in this group are those unfamiliar with the domain 
and who have not really used robots before. This group could 
include students and the general public and is particularly 
valuable for evaluating the core functionality of the robot that is 
not dependent on knowledge of the domain.  For example, users 
in this group are beneficial to test levels of autonomy, interface 
designs, different control schemes, as well as different robot 
systems, all with the goal of understanding how the robot can 
and should be used in general, but not necessarily specific to 
any domain. Experiments with participants in this group should 
include tasks that are similar to those that might be performed 
with SMEs, for the purpose of discovering the general 
principles of human-robot interaction that may apply to 
particular domains.  

2.3.3 No Robot – Domain 
Members in this group are those who have been trained in a 
specific domain and could be considered subject matter experts 
(SMEs), but who have not used robots as applied to their 
domain. This group could further be divided into a variety of 
expertise levels depending on experience and training particular 
to the domain however, in general, it suffices to say that SME 
participants either have general training regarding issues 
relevant to the domain, or specific training regarding tasks 
within the domain. As an example, a nuclear engineer might 
have generic radiation training and a Civil Support Team 
member might have general radiation training as well as 
emergency response training specific to radiation hazards.  
This group is valuable for beginning the discussions about how 
domain users will approach the use of the robot for a task that 
they are familiar with. Furthermore, as robots are introduced 
into fields where they are not prominently used, these 
experiments support a collaboration of ideas between researcher 
and SME in that the SME can provide insights to the robotics 
researcher about how they approach their task and what their 
concerns are while the robotics research can help the SME 
understand the limitations and potential of the technology.   

2.3.4 Robot – Domain 
Members in this group are similar to the SMEs in the previous 
group with the additional requirement that they have had 
experience or at least training using robots within their domain 
of expertise. As an example, a participant in this category might 
be an explosive ordinance disposal (EOD) trained individual 
with experience using a robot to accomplish the EOD mission. 
Members in this category are helpful at evaluating new 
innovations against the current state of practice.  

3. CLASSIFICATION OF PREVIOUS HRI 
EXPERIMENTS 
The purpose of this section is to use the aforementioned 
framework and characterize previous experiments with robots 
according to the proposed framework.  For each experiment we 
briefly state the goal, what the robot is used for, what is being 

evaluated, the participants, dependent measures, and lessons 
learned. Most of the experiments are focused on robots that are 
used as tools.  Future work would identify the classifications of 
experiments involving social robots. 

3.1 Interface design [22] 
Purpose: Compare 2D and 3D interface solutions for mobile 
robot teleoperation task using a joystick and a pan-tilt-zoom 
camera. 
Social robot or tool? Tool. 
Test: Component (interface design).  
Participants: (18-176) No Robot – No Domain (Students). 
Dependent Measures:  Task completion time, collisions, 
NASA-TLX workload, Behavioral entropy workload, proximity 
to obstacles, average velocity, distance traveled, objects found, 
time to identify objects. 
Lesson Learned: Operators performed better with the 3D-
egocentric interface with respect to completion time, collisions, 
workload, and proximity to obstacles. Operators were able to 
find objects faster when using the 3D interface, but most likely 
because it was easier to navigate with the 3D-egocentric 
interface, not necessarily find things. 

3.2 US Army XUV [14] 
Purpose: Examine use of scalable interfaces (tablet vs. screen) 
and operator span of control with UGVs performing 
autonomous mobility and Reconnaissance, surveillance, and 
target acquisition. 
Social robot or tool? Tool. 
Test: Component. 
Participants: (2) No Robot – Domain (Soldiers).   
Dependent Measures: Span of Control. Distance Traveled, 
number of teleoperations, number of back-ups, number or 
RSTA images sent, mission time, verbal spot reports, workload 
(NASA-TLX).  
Lessons Learned: Interface size did not have major effect, 
although participants preferred smaller tablet size. Operators 
appeared to be able to manage two robots (including 
monitoring, RSTA reports, and operator interventions). 

3.3 Robot behavior development [4, 5] 
Purpose: Compare different modes of autonomy and interface 
design for indoor search and exploration tasks. 
Social robot or tool? Tool. 
Test: Component, Set of components. 
Participants: 19--120 No Robot – No Domain (General public). 
Dependent Measures: number of objects found, localization 
accuracy, time to complete, situation awareness, workload. 
Lessons Learned: Participants with “shared” mode found more 
items. Participants with “target” mode had best localization. 

3.4 Multiple robot supervisory control [10] 
Purpose: Evaluate metrics relating to the performance of a 
human-robot team with different numbers of robots. 
Social robot or tool? Tool. 
Test: Set of systems. 
Participants: (12) No Robot – No Domain (Students). 
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Dependent Measures: Interaction time, interaction impact, 
neglect tolerance, wait time, number of tasks completed, switch 
times. 
Lessons Learned: Developed metrics indicate the limits of the 
agents in the team and contain key performance parameters but 
fall short in the category of predictive power. 

3.5 Search and rescue [6] 
Purpose: To examine operator situation awareness and 
technical search team interaction using communication 
analysis. 
Social robot or tool? Tool. 
Participants: (5) Robot – Domain (USAR students, instructors). 
Test: System. 
Dependent Measures: Communications between the robot 
operators and other team members, situation awareness. 
Lessons Learned: Operators spent more time gathering 
information about the state of the robot and the environment 
than moving the robot. Operators had difficulty integrating the 
robot’s perspective into their own view of the search and rescue 
sight. 

3.6 Search and rescue II [9] 
Purpose: This report was not based on an experiment, but on a 
real un-staged rescue response to the attack on the World Trade 
Center in September 2001. 
Social robot or tool? Tool. Also can be viewed as a social robot 
from the perspective of an essential teammate in the rescue 
response. 
Participants: Robot – Domain (USAR professionals). 
Test: System. 
Dependent Measures: Human-robot ratios, objects identified, 
observe, how robots were used, drop time. 
Lessons Learned: Most pressing needs to improve HRI are to 
reduce transport and operator human-robot ratios, create 
intelligent and assistive interfaces, and dedicate user studies to 
identify issues in the social niche of robotics applied to the 
USAR domain. 

3.7 Interfaces for robot search tasks [33] 
Purpose: To learn which interface design elements are most 
useful to USAR personnel while performing a search task. 
Social robot or tool? Tool. 
Participants: (8) No Robot – Domain (USAR professionals). 
Test: System. 
Dependent Measures: Area coverage, collisions, victims found. 
Lessons Learned: Participants covered slightly more of the area 
with the INL system. Operators preferred the INL 3D map, but 
did not like the INL overlay of the map on top of the video. 

3.8 Interfaces for robot search tasks II [33] 
Purpose: To compare a new interface design with previous 
interface designs in a maze navigation task. 
Social robot or tool? Tool. 
Participants: (18) No Robot – No Domain (Students). 
Test: Component. 
Dependent Measures: Time to completion, collisions. 

Lessons Learned: 3D map perspective yielded fewer collisions 
and faster time to complete. 

3.9 Interactive robot in a nursing home [29] 
Purpose: To study the effects of human-robot interaction 
between a robot and seniors in a nursing home. 
Social robot or tool? Social. The authors are examining the 
relationship between the human and the robot. 
Participants: No Robot – Domain (Elderly who have not 
interacted with a robot previously). 
Test: System. 
Dependent Measures: Level of social activity. 
Lessons Learned: Participants were more active when the robot 
was on, than when it was off suggesting that the robotic aspect 
of the creature improved activity among participants. 

3.10 Dance interaction in a classroom [30] 
Purpose: To observe and evaluate the effects of two dance 
algorithms on a classroom of children and to experiment with 
different methods for evaluating the interaction developed 
between the children and the robot. 
Social robot or tool? Social. The authors are examining how 
the class responds to the robot. 
Participants: No Robot – Domain (Young children who have 
not previously had a robotic playmate). 
Test: Algorithm, System. 
Dependent Measures: “good child-robot interactions”, number 
of children in the room, frequency of children re-entering the 
room, duration of time with robot. 
Lessons Learned: Children spent longer each day in the room 
when there was a robot present rather than when only music 
was playing. As time progressed, children changed how they 
interacted with the robot based on their perceived weaknesses 
(e.g. easily falls down so handle softly). 

4. METRIC CLASSES 
From the previous section we see that there are numerous 
dependent measures used by a variety of experimenters to come 
up with ways of evaluating their human-robot solution.  In fact, 
it could be said that there is no need to come up with new or 
more powerful metrics.  Rather, perhaps our focus should be 
spent on classifying the metrics so we can gain a better 
understanding of what is being measured and how it relates to 
work done from other research institutions.  In this section we 
will discuss two commonly used metric classes that address a) 
the evaluation of the task objective and b) the human 
involvement with the robot system).  While these two classes of 
metrics account for most of the effort in a human-robot 
interaction system, there is also a third class of metrics that 
account for the reliability of a system.  It seems that in many 
HRI reports, the reliability of the solution is rarely discussed, 
despite the affect of reliability on operator’s trust in the system 
and even how the operator ends up using the system.  
Therefore, this section will also discuss the role of reliability 
metrics and how they apply to the domain of human-robot 
interactions. 

4.1 Metrics evaluating task objective 
The class of metrics that evaluate the performance of a system 
relative to the task objective is focused on determining how 
well the task, goal, or mission is achieved. With respect to the 
field of human-robot interaction, measures of performance in 
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this metric class can usually be achieved even for systems that 
do not have a robotic element. For example, in a hazardous 
material detection exercise, response personnel may be 
evaluated on how quickly they searched and mapped an area, 
how accurately they reported the location of hazardous material 
and how accurately they followed their procedures.  The 
important thing is that these measures of performance could be 
achieved with or without robots as part of the tools available to 
the response personnel.  
Some of the measures of performance that relate to the class of 
evaluating the task objective include: time to completion, time 
to accomplish a subtask, errors made during the task, safety of 
the task, correlation of task performance with mission 
objectives, number of items found, correct classification of 
sensory input, coverage of the environment, similarity to 
human-performance, or tradeoffs between human and robot to 
accomplish the task. 

4.2 Metrics of human involvement 
The class of metrics of human involvement includes the 
measurement of human activities with respect to the operation 
of the robot. This class of metrics is primarily used to improve 
our understanding about the relationships between user input 
and task or objective performance as discussed in the previous 
section.  In some cases, performance is measured, and then 
reasons are sought by looking at the interaction data.  In other 
cases, theories of interaction are explored and hypothesized 
then experiments designed to evaluate the effect of the theory 
on performance. 
Much of the literature in HRI has been focused on metrics in 
this area, for example, Crandall and Cummings have identified 
two sub-classes of human involvement that include interaction 
efficiency (how effectively the operator interacts with the 
robot) and neglect efficiency (how well the robot maintains 
levels of performance when neglected by the operator) [10]. In 
fact their separation of metrics into two classes is particularly 
beneficial to most HRI activities because it separates metrics 
relating to the role of the operator from those relating to the role 
of the robot.  
Measures of performance that relate to interaction efficiency 
might include usability, interaction time joystick bandwidth, 
number of teloperation commands, NASA-TLX workload, 
Behavioral entropy workload, number of teleoperations, 
number of backups, mouse movement, joystick movement, 
keyboard presses, proximal interactions, or team interactions. 
Measures of performance that relate to the class of neglect 
tolerance might include, autonomy level of the robot, 
interaction scheme, percentage of time in autonomy modes,  
reasons for changing autonomy modes, span of control and fan-
out. 
Another common subclass of metrics related to human 
involvement and widely discussed in relation to HRI is that of 
situation awareness. The evaluation of situation awareness as 
applied to robotics most likely originated from Endsley’s work 
with aviation pilots who identified the “edge” that some pilots 
had in aerial combat and other aviation tasks as an 
improvement of their “situational awareness.” A commonly 
cited definition of situation awareness is “The perception of the 
elements in the environment within a volume of time and space, 
the comprehension of their meaning, and the projection of their 
status in the near future” [13]. Many researchers have discussed 
situation awareness as a means to better understand how well 
and how accurately the operator understands the robot’s 
relationship with the environment and the operator [6, 26, 27]. 

4.3 Metrics of system reliability 
One class of metrics that seems to be missing from many HRI 
reports and discussions is that of system reliability. By this we 
mean measures that indicate how consistently the human-robot 
system works.  Moreover, this class of metrics can be used to 
clarify the nuances, both good and bad, of a particular system. 
Some may discount the value of this class of metrics to the HRI 
field and claim that it belongs more in the engineering field of 
robotics as it relates more to the actual engineering 
(mechanical, electrical, or computer) of the robot.  However, 
we claim that it belongs in HRI evaluations because there must 
be a means to classify the nuances of human responses to robot 
systems that sometimes fail, even if the failure is related to the 
robustness of the hardware, software, or implementation of the 
algorithms. While this class of metrics might not be interesting 
to many researchers in HRI, it is none the less very important to 
the end user.  As an example, consider the following anecdotal 
story. 
In a recent experiment involving military soldiers, we were 
having some trouble with our iRobot PackBot where the video 
was being broadcast as a blank red image.  As developers we 
had never seen this and therefore had a hard time identifying 
the cause.  This red image caused significant delay in our 
experiments for a few days and we were left to converse with 
the soldiers. We asked them if they had ever seen anything like 
it before.  They said, they had and their solution was to shut 
down the system and restart it three or four times, then it would 
usually go away.  We later discovered that the cause of the red 
video was a hairline fracture in the video capture board and 
when the robot was cold, the electronic connection was not 
established however, when the robot warmed up through use, 
the slight expansion of the connections on the board caused the 
video to work.  If the robot used by the soldiers had the same 
problem, then restarting the system would be the wrong 
approach to use because it would only delay the “warming-up” 
of the system. 
In how many human-robot experiments do similar stories 
unfold? While this can often be comical to the people 
participating in the experiment and a nuisance to the 
experimenter, such experiences can have a lasting effect on 
potential end-users as we work to bring robotics to domains 
such as search and rescue and the military wherein these 
experiences may cause users to view the robot as shoddy 
equipment that has some value, but that they wouldn’t be able 
to depend on.  In some ways, it is like a flashlight or rifle that 
worked 99 out of 100 times, but 1% of the time, would not turn 
on or not fire and required the operator to remove the batteries 
or the bullets and re-install them—manageable yes, but 
certainly not preferred. These issues certainly affect how the 
human uses and interacts with the robot. 
The issue is not that entire papers need to be written on the 
reliability aspects of the HRI systems, rather, it would be 
beneficial for both readers and researchers to have some 
understanding regarding the reliability or robustness of the 
system being used.  For example, did the experiment have to be 
halted for any reason related to the technology?  How reliable 
is the software, hardware, communications, and/or algorithms?  
How much power does the robot system use?  Did the robot 
perform unsafe actions? What about communication bandwidth 
or computational resource requirements? Information regarding 
these questions could be short and to the point but would 
provide valuable insights into the reliability of the human-robot 
solution. 
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Another important aspect with respect to reliability is to 
consider how terminology is defined and used. For example, it 
seems that many institutions have their own description of 
levels of dynamic autonomy.  For example, shared control 
might involve continuous joystick input [11] or infrequent 
joystick input [5], or haptic input [18]. 
Related to the issues of defining modes of autonomy is the 
question of autonomy mode performance.  If there is a 
“guarded-motion” behavior on the robots, then how are 
collisions with obstacles recorded? Are they recorded as errors 
in operator situation awareness or in the reliability of the 
guarded motion? Moreover, why do some autonomy systems 
make a task faster while others make a task slower? Answers to 
these questions may be related to the reliability and 
craftsmanship of the autonomy modes themselves rather than 
the general principles of each autonomy mode. 
In order to fully understand the contributions of a human-robot 
interaction experiment, it is beneficial to understand some of 
the core questions relating to the reliability of the system.  This 
can help others verify the results at their own laboratory and 
make meaningful comparisons between experiments performed 
by different researchers. 

5. CONCLUSIONS 
This paper presented a simplified framework for characterizing 
experiments in human-robot interactions with the intent of 
facilitating comparisons between experiments from different 
research institutions and understanding the contributions from 
new research. The framework categorizes experiments by 
asking questions about the purpose of the robot, what is being 
evaluated, and the types of participants in the experiment. 
Experiments with similar answers to these questions should be 
grouped together and meaningful comparisons between the 
experiments should exist.  The measures of performance related 
with experiments are also grouped into three broad metric 
classes that include a) evaluations of the task objective, b) 
human involvement with the robot system, and c) system 
reliability. 
While system reliability is often overlooked in reports on 
human-robot interaction, it is essential to understand the 
reliability of the human-robot system because the reliability 
affects how end users will actually interact with the system as it 
becomes integrated into their daily routine. 
The research in this paper focused primarily on applying the 
framework to robots that are used as tools in critical 
environments.  Future work needs to show how social robots fit 
into this same framework. 
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ABSTRACT 

This study emphasizes the need for standardized measurement 

tools for human robot interaction (HRI). If we are to make 

progress in this field then we must be able to compare the 

results from different studies. A literature review has been 

performed on the measurements of five key concepts in HRI: 

anthropomorphism, animacy, likeability, perceived intelligence, 

and perceived safety. The results have been distilled into five 

consistent questionnaires using semantic differential scales. We 

report reliability and validity indicators based on several 

empirical studies that used these questionnaires. It is our hope 

that these questionnaires can be used by robot developers to 

monitor their progress. Psychologists are invited to further 

develop the questionnaires by adding new concepts, and to 

conduct further validations where it appears necessary.   

Categories and Subject Descriptors 

H.5.1 [Multimedia Information Systems]: 

Evaluation/methodology  

General Terms 

Measurement, Human Factors, Standardization 

Keywords 

Human factors, robot, perception, measurement. 

1. INTRODUCTION 
The success of service robots and, in particular, of 

entertainment robots cannot be assessed only by performance 

criteria typically found for industrial robots. The number of 

processed pieces and their accordance with quality standards 

are not necessarily the prime objectives for an entertainment 

robot such as Aibo (Sony, 1999), or a communication platform 

such as iCat (Breemen, Yan, & Meerbeek, 2005). The 

performance criteria of service robots lie within the satisfaction 

of their users. Therefore, it is necessary to measure the users’ 

perception of service robots, since these can not be measured 

within the robots themselves. 

Measuring human perception and cognition has its own pitfalls, 

and psychologists have developed extensive methodologies and 

statistical tests to objectify the acquired data. Most engineers 

who develop robots are often unaware of this large body of 

knowledge, and sometimes run naïve experiments in order to 

verify their designs. But the same naivety can also be expected 

of psychologists when confronted with the task of building a 

robot. Human-Robot Interaction (HRI) is a multidisciplinary 

field, but it can not be expected that everyone masters all skills 

equally well. We do not intend to investigate the structure of the 

HRI community and the problems it is facing in the cooperation 

of its members. The interested reader may consult Bartneck & 

Rauterberg (Bartneck & Rauterberg, 2007) who reflected on the 

structure of the Human-Computer Interaction community This 

may also apply to the HRI community. This study is intended 

for the technical developers of interactive robots who want to 

evaluate their creations without having to take a degree in 

experimental psychology. However, it is advisable to at least 

consult with a psychologist over the overall methodology of the 
experiment. 

A typical pitfall in the measurement of psychological concepts 

is to break them down into smaller, presumably better-known, 

components. This is common practice, and we do not intend to 

single out a particular author, but we still feel the need to 

present an example. Kiesler and Goetz (2002) divided the 

concept of anthropomorphism into the sub components 

sociability, intellect, and personality. They measured each 

concept with the help of a questionnaire. This breaking down 

into sub components makes sense if the relationship and 

relative importance of the sub components are known and can 

therefore be calculated back into the original concept. 

Otherwise, a presumably vague concept is simply replaced by 

series of just as vague concepts. There is no reason to believe 

that it would be easier for the users of robots to evaluate their 

sociability rather than their anthropomorphism. Caution is 

therefore necessary so as not to over-decompose concepts. Still, 

it is good practice to at least decompose the concept under 

investigation into several items
1
 so as to have richer and more 

reliable data as was suggested by Fink, volume 8, p. 20 (2003). 

A much more reliable and possibly objective method for 

measuring the users’ perception and cognition is to observe 

their behavior. If, for example, the intention of a certain robot is 

to play a game with the user, then the fun experienced can be 

deduced from the time the user spends playing it. The longer 

the user plays, the more fun it is. However, not all internal 

states of a user manifest themselves in observable behavior. 

From a practical point of view it can also be very laborious to 
score the users’ behaviors on the basis of video recordings.  

Physiological measurements form a second group of 

measurement tools. Skin conductivity, heart rate, and heart 

variance are three popular measurements that provide a good 

indication of the user’s arousal in real time. The measurement 

can be taken during the interaction with the robot. 

Unfortunately, these measurements can not distinguish the 

arousal that stems from anger from that which may originate 

from joy. To gain better insight into the user’s state, these 

measurements can be complemented by other physiological 

measurements, such as the recognition of facial expression. In 

combination, they can provide real time data, but the effort of 

                                                                    
1
 In the social sciences the term “item” refers to a single 
question or response. 

Workshop on Metrics for Human-Robot Interaction 2008, March 12th, Amsterdam

37



setting up and maintaining the equipment and software should 
not be underestimated. 

A third measurement technique is questionnaires, which are 

often used to measure the users’ attitudes. While this method is 

rather quick to conduct, its conceptual pitfalls are often 

underestimated. One of its prime limitations is, of course, that 

the questionnaire can be administered only after the actual 

experience. Subjects have to reflect on their experience 

afterwards, which might bias their response. They could, for 

example, adapt their response to the socially acceptable 
response. 

The development of a validated questionnaire involves a 

considerable amount of work, and extensive guidelines are 

available to help with the process (Dawis, 1987; Fink, 2003). 

Development will typically begin with a large number of items, 

which are intended to cover the different facets of the 

theoretical construct to be measured; next, empirical data is 

collected from a sample of the population to which the 

measurement is to be applied. After appropriate analysis of this 

data, a subset of the original list of items is then selected and 

becomes the actual multi-indicator measurement. This 

measurement will then be formally assessed with regard to its 
reliability, dimensionality, and validity.  

Due to their naivety and the amount of work necessary to create 

a validated questionnaire, developers of robots have a tendency 

to quickly cook up their own questionnaires. This conduct 

results in two main problems. Firstly, the validity and reliability 

of these questionnaires has often not been evaluated. An 

engineer is unlikely to trust a voltmeter developed by a 

psychologist unless its proper function has been shown. In the 

same manner, psychologists will have little trust in the results 

from a questionnaire developed by an engineer unless 

information about its validity and reliability is available. 

Secondly, the absence of standard questionnaires makes it 

difficult to compare the results from different researchers. If we 

are to make progress in the field of human-robot interaction 

then we shall have to develop standardized measurement tools 

similar to the ITC-SOPI questionnaire that was developed to 

measure presence (Lessiter, Freeman, Keogh, & Davidoff, 
2001). 

This study attempts to make a start in the development of 

standardized measurement tools for human-robot interaction by 

first presenting a literature review on existing questionnaires, 

and then presenting empirical studies that give an indication of 

the validity and reliability of these new questionnaires. This 

study will take the often-used concepts of anthropomorphism, 

animacy, likeability, and perceived intelligence and perceived 

safety as starting points to propose a consistent set of five 
questionnaires for these concepts.  

We can not offer an exhaustive framework for the perception of 

robots similar to the frameworks that have already been 

developed for social robots (Bartneck & Forlizzi, 2004; Fong, 

Nourbakhsh, & Dautenhahn, 2003) that would justify the 

selection of these five concepts. We can only hint at the fact 

that the concepts proposed have been necessary for our own 

research and that they are likely to have relationships with each 

other. A highly anthropomorphic and intelligent robot is likely 

to be perceived to be more animate and possibly also more 

likeable. The verification of such a model does require 

appropriate measurement instruments. The discussion of 

whether it is good practice to first develop a theory and then the 

observation method or vice versa has not reached a conclusion 

(Chalmers, 1999), but every journey begins with a first step. 

The proposed set of questionnaires can later be extended to 

cover other relevant concepts, and their relationships can be 

further explored. The emphasis is on presenting questionnaires 

that can be used directly in the development of interactive 

robots. Many robots are being built right now, and the engineers 

cannot wait for a mature model to emerge. We even seriously 

consider the position that such a framework can be created only 

once we have the robots and measurement tools in place. 

Unfortunately, the literature review revealed questionnaires that 

used different types of items, namely Likert-scales (Likert, 

1932) and semantic differential scales (Osgood, Suci, & 

Tannenbaum, 1957). If more than one questionnaire is to be 

used for the evaluation of a certain robot, it is beneficial if the 

questionnaires use the same type of items. This consistency 

makes it easy for the participants to learn the method and 

thereby avoids errors in their responses. It was therefore 

decided to transfer Likert type scales to semantic differential 

scales. We shall now discuss briefly the differences between 
these two types of items.  

In semantic differential scales the respondent is asked to 

indicate his or her position on a scale between two bipolar 

words, the anchors (see Figure 1, top). In Likert scales (see 

Figure 1, bottom), subjects are asked to respond to a stem, often 

in the form of a statement, such as “I like ice cream”. The scale 

is frequently anchored with choices of “agree” - “disagree” or 
“like” - “dislike”. 

Strong   1   2   3   4   5   Weak 

 

I like ice cream  Disagree   1   2   3   4   5   Agree 

 

Figure 1. Example of a semantic differential scale (top) and 

likert scale (bottom). The participant would be asked to rate 

the stimulus on this scale by circling one of the numbers. 

Both are rating scales, and provided that response distributions 

are not forced, semantic differential data can be treated just as 

any other rating data (Dawis, 1987). The statistical analysis is 

identical. However, a semantic differential format may 

effectively reduce acquiescence bias without lowering 

psychometric quality (Friborg, Martinussen, & Rosenvinge, 

2006). A common objection to Osgood's semantic differential 

method is that it appears to assume that the adjectives chosen as 

anchors mean the same to everyone. Thus, the method becomes 

self-contradictory; it starts from the presumption that different 

people interpret the same word differently, but has to rely on 

the assumption that this is not true for the anchors. However, 

this study proposes to use the semantic differential scales to 

evaluate not the meaning of words, but the attitude towards 

robots. Powers and Kiesler (2006) report a negative correlation 

(-.23) between Humanlikeness and Machinelikeness, which 

strengthens our view that semantic differentials are a useful tool 

for measuring the users’ perception of robots, while we remain 
aware of the fact that every method has its limitations. 

Some information on the validity and reliability of the 

questionnaires is already available from the original studies on 

which they are based. However, the transformation from Likert 

scales to semantic differential scales may compromise these 

indicators to a certain degree. We shall compensate this 

possible loss by reporting on complementary empirical studies 

later in the text. First, we would like to discuss the different 
types of validity and reliability. 

Fink in Volume 8, pp 5-44, (Fink, 2003) discusses several 

forms of reliability and validity. Among the scientific forms of 
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validity we find content validity, criterion validity, and 

construct validity. The latter, which determines the degree to 

which the instrument works in comparison with others, can only 

be assessed after years of experience with a questionnaire, and 

construct validity is often not calculated as a quantifiable 

statistic. Given the short history of research in HRI it would 

appear difficult to achieve construct validity. The same holds 

true for criterion validity. There is a scarcity of validated 

questionnaires with which our proposed questionnaires can be 

compared. We can make an argument for content validity since 

experts in the field carried out the original studies, and 

measurements of the validity and reliability have even been 

published from time to time. The researchers involved in the 

transformation of the proposed questionnaires were also in 

close contact with relevant experts in the field with regard to 

the questionnaires. The proposed questionnaires can therefore 
be considered to have content validity. 

It is easier to evaluate the reliability of the questionnaire, and 

Fink describes three forms: test-retest reliability, alternate form 

reliability, and internal consistency reliability. The latter is a 

measurement for how well the different items measure the same 

concept, and it is of particular importance to the questionnaires 

proposed because they are designed to be homogenous in 

content. Internal consistency involves the calculation of a 

statistic known as Cronbach’s Alpha. It measures the internal 

consistency reliability among a group of items that are 

combined to form a single scale. It reflects the homogeneity of 

the scale. Given the choice of homogeneous semantic 

differential scales, alternate form reliability appears difficult to 

achieve. The items cannot simply be negated and asked again 

because semantic differential scales already include 

dichotomous pairs of adjectives. Test-retest reliability can even 

be tested within the same experiment by splitting the 

participants randomly into two groups. This procedure requires 

a sufficiently large number of participants and unfortunately 

none of the studies that we have access to had enough 

participants to allow for a meaningful test-retest analysis. For 

both, test-retest reliability and internal consistency reliability, 

Nunnally (1978) recommends a minimum value of 0.7. We 

would now like to discuss the five concepts of 

anthropomorphism, animacy, likeability, perceived intelligence, 

and perceived safety in more detail, and describe a 

questionnaire for each of them. 

2. ANTHROPOMORPHISM 
Anthropomorphism refers to the attribution of a human form, 

human characteristics, or human behavior to nonhuman things 

such as robots, computers, and animals. Hiroshi Ishiguro, for 

example, develops androids that, for a short period, are 

indistinguishable from human beings (Ishiguro, 2005). His 

highly anthropomorphic androids struggle with the so-called 

‘uncanny valley’, a theory that states that as a robot is made 

more humanlike in its appearance and movements, the 

emotional response from a human being to the robot becomes 

increasingly positive and empathic, until a point is reached 

beyond which the response quickly becomes that of intense 

repulsion. However, as the appearance and movements continue 

to become less distinguishable from those of a human being, the 

emotional response becomes positive once more and 
approaches human-human empathy levels. 

Even if it is not the intention of the design of a certain robot to 

be as humanlike as possible, it still remains important to match 

the appearance of the robot with its abilities. A too 

anthropomorphic appearance can evoke expectations that the 

robot might not be able to fulfill. If, for example, the robot has a 

human-shaped face then the naïve user will expect that the 

robot is able to listen and to talk. To prevent disappointment it 

is necessary for all developers to pay close attention to the 
anthropomorphism level of their robots. 

An interesting behavioral measurement for anthropomorphism 

has been presented by Minato et al. (2005). They attempted to 

analyze differences in where the participants were looking 

when they looked at either a human or an android. The 

hypothesis is that people look differently at humans compared 

to robots. They have not been able to produce reliable 

conclusions yet, but their approach could turn out to be very 

useful, assuming that they can overcome the technical 
difficulties. 

MacDorman (2006) presents an example of a naïve 

questionnaire. A single question is asked to assess the human-

likeness of what is being viewed (9-point semantic differential, 

mechanical versus humanlike). It is good practice in the social 

sciences to ask multiple questions about the same concept in 

order to be able to check the participants’ consistency and the 

questionnaire’s reliability. Powers and Kiesler (2006), in 

comparison, used six items and are able to report a Cronbach’s 

Alpha of 0.85. Their questionnaire therefore appears to be more 

suitable. It was necessary to transform the items used by 

Powers and Kiesler into semantic differentials: Fake / Natural, 

Machinelike / Humanlike, Unconscious / Conscious, Artificial / 
Lifelike, and Moving rigidly / Moving elegantly. 

Two studies are available in which this new anthropomorphism 

questionnaire was used. The first one reports a Cronbach’s 

Alpha of 0.878 (Bartneck, Kanda, Ishiguro, & Hagita, 2007) 

and we would like to report the Cronbach’s Alphas for the 

second study (Bartneck, Kanda, Ishiguro, & Hagita, 2008) in 

this paper. The study consisted of three within conditions for 

which the Cronbach’s Alphas must be reported separately. We 

can report a Cronbach’s Alpha of 0.929 for the human 

condition, 0.923 for the android condition and 0.856 for the 

masked android condition. The alpha values are well above 0.7, 

so we can conclude that the anthropomorphism questionnaire 
has sufficient internal consistency reliability.  

3. ANIMACY 
The goal of many robotics researchers is to make their robots 

lifelike. Computer games, such as The Sims, Creatures, or 

Nintendo Dogs show that lifelike creatures can deeply involve 

users emotionally. This involvement can then be used to 

influence users (Fogg, 2003). Since Heider and Simmel (1944), 

a considerable amount of research has been devoted to the 

perceived animacy and “intentions” of geometric shapes on 

computer screens. Scholl and Tremoulet (2000) offer a good 

summary of the research field, but, on examining the list of 

references, it becomes apparent that only two of the 79 

references deal directly with animacy. Most of the reviewed 

work focuses on causality and intention. This may indicate that 

the measurement of animacy is difficult. Tremoulet and 

Feldman (2000) only asked their participants to evaluate the 

animacy of ‘particles’ under a microscope on a single scale (7-

point Likert scale, 1=definitely not alive, 7 definitely alive). It 

is questionable how much sense it makes to ask participants 

about the animacy of particles. By definition they cannot be 

alive since particles tend to be even smaller than the simplest 
organisms.  

Asking about the perceived animacy of a certain stimulus 

makes sense only if there is a possibility for it to be alive. 

Robots can show physical behavior, reactions to stimuli, and 

even language skills. These are typically attributed only to 

animals, and hence it can be argued that it makes sense to ask 
participants about their perception of the animacy of robots. 
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McAleer, et al. (2004) claim to have analyzed the perceived 

animacy of modern dancers and their abstractions on a 

computer screen, but only qualitative data of the perceived 

arousal is presented. Animacy was measured with free 

responses. They looked for terms and statements that indicated 

that subjects had attributed human movements and 

characteristics to the shapes. These were terms such as 

“touched”, “chased”, and “followed”, and emotions such as 

“happy” or “angry”. Other guides to animacy were when the 

shapes were generally being described in active roles, as 

opposed to being controlled in a passive role. However, they do 
not present any quantitative data for their analysis. 

A better approach has been presented by Lee, Kwan Min, Park, 

Namkee & Song, Hayeon (2005). With their four items (10-

point Likert scale; lifelike, machine-like, interactive, 

responsive) they have been able to achieve a Cronbach’s Alpha 

of 0.76. For the questionnaires in this study, their items have 

been transformed into semantic differentials: Dead / Alive, 

Stagnant / Lively, Mechanical / Organic, Artificial / Lifelike, 

Inert / Interactive, Apathetic / Responsive. One study used this 

new questionnaire (Bartneck, Kanda, Mubin, & Mahmud, 

2007) and reported a Cronbach’s Alpha of 0.702, which is 

sufficiently high for us to conclude that the new animacy 
questionnaire has sufficient internal consistency reliability. 

4. LIKEABILITY 
It has been reported that the way in which people form positive 

impressions of others is to some degree dependent on the visual 

and vocal behavior of the targets (Clark & Rutter, 1985), and 

that positive first impressions (e.g., likeability) of a person often 

lead to more positive evaluations of that person (Robbins & 

DeNisi, 1994). Interviewers report knowing within 1 to 2 

minutes whether a potential job applicant is a winner, and 

people report knowing within the first 30 seconds the likelihood 

that a blind date will be a success (Berg & Piner, 1990). There 

is a growing body of research indicating that people often make 

important judgments within seconds of meeting a person, 

sometimes remaining quite unaware of both the obvious and 

subtle cues that may be influencing their judgments. Since 

computers, and thereby robots in particular, are to some degree 

treated as social actors (Nass & Reeves, 1996), it can be 
assumed that people are able to judge robots just as. 

Jennifer Monathan (1998) complemented her “liking” question 

with 5-point semantic differential scales: nice / awful, friendly / 

unfriendly, kind / unkind, and pleasant / unpleasant, because 

these judgments tend to demonstrate considerable variance in 

common with “liking” judgments (Burgoon & Hale, 1987). 

Monahan later eliminated the kind-unkind and pleasant-

unpleasant items in her own analysis since they did not load 

sufficiently in a factor analysis that also included items from 

three other factors. The Cronbach’s Alpha of 0.68 therefore 

relates only to this reduced scale. Her experimental focus is 

different from the intended use of her questionnaire in the field 

of HRI. She also included concepts of physical attraction, 

conversational skills, and other orientations, which might not be 

of prime relevance to HRI. In particular, physical attraction 

might be unsuitable for robots. No reports on successful human-

robot reproduction are available yet and hopefully never will 

be. We decided to only include the five items, since it is always 

possible to exclude items in cases where they would not 
contribute to the reliability and validity of the questionnaire. 

Two studies used this new likeability questionnaire. The first 

reports a Cronbach’s Alpha of 0.865 (Bartneck, Kanda, 

Ishiguro, & Hagita, 2007), and we report the Cronbach’s Alpha 

for the second (Bartneck, Kanda, Ishiguro, & Hagita, 2008) in 

this paper. The study consisted of three “within” conditions for 

which the Cronbach’s Alpha must be reported separately. 

Without going into too much detail of the study, we can report a 

Cronbach’s Alpha of 0.923 for the human condition, 0.878 for 

the android condition, and 0.842 for the masked android 

condition. The alpha values are well above 0.7, and hence we 

can conclude that the likeability questionnaire has sufficient 
internal consistency reliability. 

5. PERCEIVED INTELLIGENCE  
Interactive robots face a tremendous challenge in acting 

intelligently. The reasons can be traced back to the field of 

artificial intelligence (AI). The robots’ behaviors are based on 

methods and knowledge that were developed by AI. Many of 

the past promises of AI have not been fulfilled, and AI has been 

criticized extensively (Dreyfus & Dreyfus, 1992; Dreyfus, 

Dreyfus, & Athanasiou, 1986; Searle, 1980; Weizenbaum, 
1976).  

One of the main problems that AI is struggling with is the 

difficulty of formalizing human behavior, for example, in 

expert systems. Computers require this formalization to 

generate intelligent and human-like behavior. And as long as 

the field of AI has not made considerable progress on these 

issues, robot intelligence will remain at a very limited level. So 

far, we have been using many Wizard-Of-Oz methods to fake 

intelligent robotic behavior, but this is possible only in the 

confines of the research environment. Once the robots are 

deployed in the complex world of everyday users, their 

limitations will become apparent. Moreover, when the users are 

interacting with the robot for years rather than minutes, they 
will become aware of the limited abilities of most robots. 

Evasion strategies have also been utilized. The robot would 

show more or less random behavior while interacting with the 

user, and the user in turn sees patterns in this behavior which 

he/she interprets as intelligence. Such a strategy will not lead to 

a solution of the problem, and its success is limited to short 

interactions. Given sufficient time the user will give up his/her 

hypothesized patterns of the robot’s intelligent behavior and 

become bored with its limited random vocabulary of behaviors. 

In the end, the perceived intelligence of a robot will depend on 

its competence (Koda, 1996). To monitor the progress being 

made in robotic intelligence it is important to have a good 
measurement tool.  

Warner and Sugarman (1996) developed an intellectual 

evaluation scale that consists of five seven-point semantic 

differential items: Incompetent / Competent, Ignorant / 

Knowledgeable, Irresponsible / Responsible, Unintelligent / 

Intelligent, Foolish / Sensible. Parise et al. (Parise, Kiesler, 

Sproull , & Waters 1996) excluded one question from this scale, 

and reported a Cronbach’s Alpha of 0.92. The questionnaire 

was again used by Kiesler, Sproull and Waters (Kiesler, 

Sproull, & Waters, 1996), but no alpha was reported. Three 

other studies used the perceived intelligence questionnaire, and 

reported Cronbach’s Alpha values of 0.75 (Bartneck, Kanda, 

Ishiguro, & Hagita, 2008), 0.769 (Bartneck, Verbunt, Mubin, & 

Mahmud, 2007), and 0.763 (Bartneck, Kanda, Mubin, & 

Mahmud, 2007). These values are above the suggested 0.7 

threshold, and hence the perceived intelligence questionnaire 

can be considered to have satisfactory internal consistency 
reliability. 

6. PERCEIVED SAFETY  
Perceived safety describes the user’s perception of the level of 

danger when interacting with a robot, and the user’s level of 

comfort during the interaction. Achieving a positive perception 

of safety is a key requirement if robots are to be accepted as 

partners and co-workers in human environments. Perceived 
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safety and user comfort have rarely been measured directly. 

Instead, indirect measures have been used - the measurement of 

the affective state of the user through the use of physiological 

sensors (Kulic & Croft, 2005; Rani, Sarkar, Smith, & Kirby, 

2004; Rani, Sims, Brackin, & Sarkar, 2002), questionnaires 

(Inoue, Nonaka, Ujiie, Takubo, & Arai, 2005; Kulic & Croft, 

2005; Wada, Shibata, Saito, & Tanie, 2004), and direct input 

devices (Koay, Walters, & Dautenhahn, 2005). That is, instead 

of asking subjects to evaluate the robot, researchers frequently 

use affective state estimation or questionnaires asking how the 

subject feels in order to measure the perceived safety and 
comfort level indirectly. 

For example, Sarkar proposes the use of multiple physiological 

signals to estimate affective state, and to use this estimate to 

modify robotic actions to make the user more comfortable 

(Sarkar, 2002). Rani et al. (2004; 2002) use heart-rate analysis 

and multiple physiological signals to estimate human stress 

levels. In Rani et al. (2004), an autonomous mobile robot 

monitors the stress level of the user, and if the level exceeds a 

certain value, the robot returns the user in a simulated rescue 

attempt. However, in their study, the robot does not interact 

directly with the human; instead, pre-recorded physiological 

information is used to allow the robot to assess the human’s 
condition.  

Koay et al. (2005) describe an early study where human 

reaction to robot motions was measured online. In this study, 28 

subjects interacted with a robot in a simulated living room 

environment. The robot motion was controlled by the 

experimenters in a “Wizard of Oz” setup. The subjects were 

asked to indicate their level of comfort with the robot by means 

of a handheld device. The device consisted of a single slider 

control to indicate comfort level, and a radio signal data link. 

Data from only 7 subjects was considered reliable, and was 

included in subsequent analysis. Analysis of the device data 

with the video of the experiment found that subjects indicated 

discomfort when the robot was blocking their path, the robot 

was moving behind them, or the robot was on a collision course 
with them. 

Nonaka et al (2004) describe a set of experiments where human 

response to pick-and-place motions of a virtual humanoid robot 

is evaluated. In their experiment, a virtual reality display is used 

to depict the robot. Human response is measured through heart 

rate measurements and subjective responses. A 6-level scale is 

used from 1 = “never” to 6 = “very much”, for the categories of 

“surprise”, “fear”, “disgust”, and “unpleasantness”. No 

relationship was found between the heart rate and robot motion, 

but a correlation was reported between the robot velocity and 

the subject’s rating of “fear” and “surprise”. In a subsequent 

study (Inoue, Nonaka, Ujiie, Takubo, & Arai, 2005), a physical 

mobile manipulator was used to validate the results obtained 

with the virtual robot. In this case, subjects are asked to rate 

their responses on the following (5-point) direction levels: 

“secure – anxious”, “restless – calm”, “comfortable – 

unpleasant”, “unapproachable – accessible”, “favorable – 

unfavorable”, “tense – relaxed”, “unfriendly – friendly”, 

“interesting – tedious”, and “unreliable – reliable”. They are 

also asked to rate their level of “intimidated” and “surprised” on 

a 5 –point Likert scale. The study finds that similar results are 

obtained regardless of whether a physical or a virtual robot is 

used. Unfortunately, no information about the reliability or 

validity of their scales is available. There is a very large number 

of different questions that can be asked on the topic of safety 

and comfort in response to physical robot motion. This 

underlines the need for a careful and studied set of baseline 

questions for eliciting comparable results from research efforts, 

especially in concert with physiological measurement tools. It 

becomes apparent that two approaches can be taken to assess 

the perceived safety. On the one hand the users can be asked to 

evaluate their impression of the robot, and on the other hand 

they can be asked to assess their own affective state. It is 

assumed that if the robot is perceived to be dangerous then the 

user affective state would be tense. 

Kulic and Croft (2005) combined a questionnaire with 

physiological sensors to estimate the user’s level of anxiety and 

surprise during sample interactions with an industrial robot. 

They ask the user to rate their level of anxiety, surprise, and 

calmness during each sample robot motion. A 5 point Likert 

scale is used. The Cronbach’s Alpha for the affective state 

portion of the questionnaire is 0.91. In addition, the subject is 

asked to rate their level of attention during the robot motion, to 

ensure that the elicited affective state was caused by the robot 

rather than by some other internal or external distraction. In this 

work, they show that motion planning can be used to reduce the 

perceived anxiety and surprise felt by subjects during high 

speed movements. This and later work (Kulic & Croft, 2006) by 

the same authors showed a strong statistical correlation between 

the affective state reported by the subjects and their 

physiological responses. The scales they produced can be 

transformed to the following semantic differential scales: 

Anxious / Relaxed, Agitated / Calm, Quiescent / Surprised. This 

questionnaire focuses on the affective state of the user. To our 

knowledge, no suitable questionnaire for rating the safety of a 
robot is available. 

7. CONCLUSIONS 
The study proposes a series of questionnaires to measure the 

users’ perception of robots. This series will be called 

“Godspeed” because it is intended to help creators of robots on 

their development journey. Appendix A shows the application 

of the five Godspeed questionnaires using 5-point scales. It is 

important to notice that there is a certain overlap between 

anthropomorphism and animacy. The item artificial / lifelike 

appears in both sections. This is to be expected, since being 
alive is an essential part of being human-like. 

When one of these questionnaires is used by itself in a study it 

would be useful to mask the questionnaire’s intention by adding 

dummy items, such as optimistic / pessimistic. If multiple 

questionnaires are used then the items should be mixed so as to 

mask the intention. Before calculating the mean scores for 

anthropomorphism, animacy, likeability, or perceived 

intelligence it is good practice to perform a reliability test and 

report the resulting Cronbach’s Alpha.  

The interpretation of the results has, of course, some 

limitations. First, it is extremely difficult to determine the 

ground truth. In other words, it is complicated to determine 

objectively, for example, how anthropomorphic a certain robot 

is. Many factors, such as the cultural backgrounds of the 

participants, prior experiences with robots, and personality may 

influence the measurements. Taking all the possible biases into 

account would require a complex and therefore impracticable 

experiment. The resulting values of the measurements should 

therefore be interpreted not as absolute values, but rather as a 

tool for comparison. Robot developers can, for example, use the 

questionnaires to compare different configurations of a robot. 

The results may then help the developers to choose one option 

over the other. In the future, this set of questionnaires could be 

extended to also include the believability of a robot, the 

enjoyment of interacting with it, and the robot’s social 
presence. 

It is the hope of the authors that robot developers may find this 

collection of measurement tools useful. Using these tools would 

make the results in HRI research more comparable and could 

Workshop on Metrics for Human-Robot Interaction 2008, March 12th, Amsterdam

41



therefore increase our progress. Interested readers, in particular 

experimental psychologists, are invited to continue to develop 
these questionnaires, and to validate them further.  

A necessary development would be translation into different 

languages. Only native speakers can understand the true 

meanings of the adjectives in their language. It is therefore 

necessary to translate the questionnaires into the mother 

language of the participants. Appendix A includes the Japanese 

translation of the adjectives that we created using the back 

translation method. It is advisable to use the same method to 

translate the questionnaire into other languages. It would be 

appreciated if other translations are reported back to the authors 

of this study. They will then be collected and posted on this 
website:  

http://www.bartneck.de/work/researchProjects/socialRobotics/godspeed 
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Appendix A: Overview of the Godspeed Questionnaire series using a 5-point scale. 

 

 

GODSPEED I: ANTHROPOMORPHISM 

Please rate your impression of the robot on these scales: 

 

GODSPEED II: ANIMACY 

Please rate your impression of the robot on these scales: 

 

GODSPEED III: LIKEABILITY 

Please rate your impression of the robot on these scales: 

 

GODSPEED IV: PERCEIVED INTELLIGENCE 

Please rate your impression of the robot on these scales: 

 

GODSPEED V: PERCEIVED SAFETY 

Please rate your emotional state on these scales: 
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ABSTRACT 
As artificial anthropomorphic agents such as humanoid and 
android robots are increasingly present in our societies, it is 
important to understand humans’ automatic and unconscious 
reactions to these agents. “Social resonance” is an emerging 
framework in social cognitive neuroscience, based on the 
finding of an overlap between cognitive processes used when 
experiencing a mental state and when perceiving another 
individual experiencing the same mental state. It has been 
applied to the domains of action, emotion and pain. After 
presenting this framework and discussing its use to address 
questions pertaining to artificial agents’ social competence I 
will present two types of benchmark tests that have been used 
to test social resonance effects of humanoid robots. A first type 
uses paradigms derived from experimental psychology to 
investigate humans’ responses to artificial agents. Social 
resonance, applied to the domain of action, implies interference 
between observed and executed actions, which can be measured 
as a function of whether the observed agent is a robot or a 
human. A second series of works in progress uses human 
functional neuroimaging to investigate the brain response to the 
observation of humanoid robots actions or emotions. Activity in 
regions resonating to the observation of humans is probed 
against robots to compare their responses to both agents. 

Categories and Subject Descriptors 
H5.2 [Information Interfaces and Presentation]: User 
Interfaces - User-centered design; Interaction styles; Theory 
and methods. 

General Terms 
Experimentation. 

Keywords 
Social cognitive neuroscience, resonance, mirror neurons, 
humanoids. 

1. INTRODUCTION 
Artificial anthropomorphic agents such as humanoid and 
android robots are increasingly present in our societies. Aichi 
2005 exposition broadcasted internationally tens of robots, from 
task-specialized robots to social androids welcoming the 
visitors. Everyday use of robots is becoming accessible, as with 
the example of Kokoro’s company simroid, a feeling and 
responsive android patient for use as a training tool for dentists, 
or robotic companions being introduced for use with children 
[1] or elderly people.  

For these robots to interact optimally with humans, it is 
important to understand humans’ automatic and unconscious 
reactions to these agents. Studies have addressed the issue of 
the form [2] and functionalities [3-6] a humanoid robot should 
have in order to be socially accepted. Both types of approaches 
have mostly relied on introspective judgments or implicit 
assumptions, such as the need for human traits, which may bias 
their conclusions. Conversely, the “Uncanny Valley of 
eeriness” hypothesis proposes that artificial agents imperfectly 
attempting to impersonate humans induce a negative emotional 
response [7, 8]. The felt creepiness of robots such as the 
simroid tends to confirm this hypothesis, which has served for 
years as a guideline to avoid realistic anthropomorphism in 
robotic designs. Take for example Toshitada Doi, then Sony's 
corporate executive vice president, on the design of qrio, 
Sony’s humanoid robot: “We suggested the idea of an "eight 
year-old space life form" to the designer -- we didn't want to 
make it too similar to a human. In the background, as well, lay 
an idea passed down from the man whose work forms the 
foundation of the Japanese robot industry, Masahiro Mori: "the 
valley of eeriness". If your design is too close to human form, at 
a certain point it becomes just too . . . uncanny. So, while we 
created QRIO in a human image, we also wanted to give it little 
bit of a "spaceman" feel.” Nowadays though, people like David 
Hanson, founder of Hanson robotics, builds realistic 
anthropomorphic robots under the assumption that the uncanny 
valley is an illusion caused by the poor quality of aesthetic 
designs [9]. Its introduction of an elastic polymer efficiently 
mimicking the human skin, Frubber, has improved the 
subjective quality of his robots, an argument in favor of the idea 
that if it exists, the uncanny valley is everything but 
insurmountable. 
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Figure 1: Sketch of the uncanny valley. The Valley 
represents the negative emotional response hypothesized by 

Masahiro Mori in response to realistic albeit imperfect 
anthropomorphic agent. 

Despite its importance in robotic design, and, more widely, in 
the robotic industry, the theory of the uncanny valley has only 
recently started to be investigated with scientific tools. Karl 
MacDorman and Iroshi Ishiguro in particular, through their 
collaboration with the robotic firm Kokoro in the development 
of increasingly acceptable androids, have played a major role in 
naturalizing the investigation of the uncanny valley [8]. Yet 
Masahiro Mori’s hypothesis is increasingly being seen as 
unpractical. While it is possible to describe human emotional 
reactions along one axis, restricting it to its valence for instance 
– positive versus negative emotions -, such a reduction of 
dimensionalities is deeply unsatisfying when applied to reduce 
robotic designs anthropomorphism along one axis. Despite a 
number of laudable attempts, more particularly using morphs 
between real and artificial agents, the linearity of 
“anthropomorphism” as a single measure remains dubious. 

As a consequence, these questions about robotic designs, not 
limited to the uncanny valley but extended to all features that 
modulate the social competence of artificial agents, should be 
firmly grounded in a theoretical framework and follow robust 
experimental paradigms. I will present how such a strategy is 
being implemented using the “social resonance” hypothesis, 
which offers plausible explanations of implicit aspects of social 
interactions between human agents in everyday life. An agent is 
an entity able to produce an action, in other words, to have a 
perceivable effect on the world. Classically, agents refer to 
intentional (or real) agents, that is living creatures and 
prominently humans, for which intentionality of behavior can 
be assessed directly. Treating robots as “artificial agents”, the 
social resonance hypothesis can be applied to the investigation 
of human reactions towards robotics designs. “Artificial agent” 
here refers to any artificial, man-made entity that resembles an 
intentional agent in that it produces seemingly intentional 
actions. This definition includes humanoid robots comprising 
the realistic androids, but also computer animations of 
anthropomorphic characters.  Social competence is their ability 
to engage in natural exchanges, or social interactions, with 
intentional agents. 

In a first part, I will introduce the theoretical framework of 
social resonance. In the second part, I will give specific 
examples of how hypotheses derived from this framework can 
be tested experimentally. In a third part, I will introduce more 
recent attempts to probe social resonance in response to 
artificial agents using human functional neuroimaging. 

2. SOCIAL RESONANCE: A 
THEORETICAL FRAMEWORK 
2.1 Overlook 

Following the finding that the same neural structures show 
an increase of activity both when executing a given action and 
when observing another individual executing the same action, 
theories of social behaviours using concepts of resonance have 
flourished in the scientific literature [10-12]. Similar ideas can 
be traced back as far as William James in the 19th century [13], 
or more recently the theory of event coding [14]. In the domain 
of action, neuropsychological findings hinted, in the early 
1990s, that gesture perception and limb praxis share the same 
cortical circuits [15]. Similarly in language, the motor theory of 
speech perception claimed, on the basis of experimental data, 
that the object of speech perception are not sounds, but the 
phonetic gestures of the speaker, whose neural underpinnings 
are motor commands [16]. I refer to this process as motor 
resonance, which is defined, at the behavioural and neural 
levels, as the automatic activation of motor control systems 
during perception of actions. Mirror neurons renewed interest 
in these processes by offering the first demonstration that 
resonance had validity at the cellular level.  

 

2.2 Neurophysiology of resonance 
2.2.1 Macaque monkey mirror neurons 
Mirror neurons are a type of neuron found in the macaque 
monkey brain and defined by their response, as recorded by 
single cell electrophysiological recordings. First reported in 
1992 by Giacomo Rizzolatti’s group in Parma [17], they were 
officially named “mirror neurons” in a 1996 Cognitive Brain 
Research report as “a particular subset of F5 neurons [which] 
discharge[s] when the monkey observes meaningful hand 
movements made by the experimenter” [18]. The importance of 
this discovery stems from the known function of area F5, a 
premotor area in which neurons discharge when monkeys 
execute distal goal-directed motor acts such as grasping, 
holding or tearing an object. Comparing the various reports, it 
is reasonable to assume that around 20% of recordable neurons 
in these areas have mirror properties in a loose sense, but only a 
lower percentage, around 5%, shows action specificity (i.e. the 
same action is the most efficient in causing the neuron to fire 
when the monkey observes and when he executes it). 
 

2.2.2 Human neuroimaging data: action 
observation 
The human physiological data, using the brain imaging 
techniques which emerged in the last decades such as positron 
emission tomography (PET), functional magnetic resonance 
imagery (fMRI), electroencephalography (EEG), 
magnetoencephalography (MEG) and transcranial magnetic 
stimulation (TMS), entails an expected conclusion on the basis 
of the mirror neuron literature in macaque monkey: premotor 
cortices, originally considered to be exclusively concerned with 
motor control, are also active during observation of actions in 
the absence of any action execution [19]. What remains 
unknown is whether the same brain region, and a fortiori the 
same neurons, would be activated by the observation and the 
execution of the same action in the whole of the premotor 
system, or whether this specificity is limited to a small 
percentage of ventral premotor neurons. In other words, are all 
premotor regions activated in response to the observation of 
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action populated with mirror neurons? But irrespective of the 
answer to this question, accumulating human neuroimaging 
data does confirm in humans what mirror neurons demonstrated 
beyond doubt in macaque monkeys at the cellular level: 
neurophysiological bases for the perception of other 
individuals’ behaviors makes use of the neurophysiological 
bases for the control of the self’s behavior.  

 

2.2.3 Human neuroimaging data: generalization of 
resonance 
An intriguing recent trend in the human literature is that this 
resonance is not limited to observation of object-directed hand 
actions, as mirror neurons are, but generalizes to a number of 
other domains of cognition. For example, an fMRI study 
investigated touch perception by looking for overlap between 
being touched and observing someone being touched [20]. An 
overlap of activity was found in the secondary somatosensory 
cortex, a brain region involved in integrating somatosensory 
information with other sensory modalities such as touch. 
Another study reported activity in the primary sensory cortex 
during the observation of touch [21]. Thus, there is a resonance 
for touch, by which observation of someone else being touched 
recruits neural underpinnings of the feeling of touch. In the 
same vein, observation of the expression of disgust activates a 
region of the insula also activated during the feeling of disgust 
caused by a nauseating smell [22]. A neuron in the anterior 
cingulate cortex, which participates in pain perception, fired 
when a patient experienced pinpricks and when he observed the 
examiner receiving the same painful stimulus [23]. A last 
example concerns emotions: the amygdala, a brain structure 
involved in feeling of primary emotions such as fear is 
fundamental in recognizing fear from facial expressions [24].  

 

The mirror neurons studied in macaque monkey are a very 
specific example of a more general mechanism of human 
cognition, namely the fact that neuronal structures used when 
we experience a mental state, including but not limited to 
internal representation of an action, are also used when we 
perceive other individuals experiencing the same mental state. 
These examples support a generalization of motor resonance to 
other domains of cognition such as emotions and pain, that can 
be transferred between interacting agents, hence the term of 
social resonance. 
 

2.3 Functions of resonance in social 
interactions 
Motor resonance is evident in behaviors like action contagion 
(contagion of yawning for example), motor priming (the 
facilitation of the execution of an action by seeing it done [25]) 
and motor interference (the hindering effect of observing 
incompatible actions during execution of actions [26]). But, 
does the motor resonance described in a laboratory environment 
have a significant impact in everyday life? The chameleon 
effect was introduced to describe the unconscious reproduction 
of “postures, mannerisms, facial expressions and other 
behaviors of one’s interacting partner” [27]. This effect can 
easily be experienced in face-to-face interactions, when one 
crosses his arms or legs to see his partner swiftly adopt the 
same posture. Subjects unaware of the purpose of the 
experiment interacted with an experimenter performing one of 
two target postures, rubbing the face or shaking the foot. 
Analysis of the behavior showed a significant increase of the 

tendency to engage in the same action. In addition this imitation 
makes the person facing considered as more likable even 
though you are not aware of this imitation [27]. This mimicry 
has been described as a source of empathy [28], and motor 
resonance offers a parsimonious system to automatically 
identify with conspecifics.  
The main function classically attributed to resonance is action 
understanding. The most convincing argument to date comes 
from neuropsychology, the study of cognitive impairments 
consecutive to brain lesions. It was recently reported that 
premotor lesions impair the perception of biological motion 
presented using point-light displays [29]. Therefore, not only 
are premotor cortices activated during the perception of action, 
but also their lesion impairs the perception of biological 
motion, demonstrating that they have are functionally involved 
in the perception of action. 

Another function frequently associated with resonance is 
imitation. Imitation covers a continuum of behaviors ranging 
from simple, automatic and involuntary action contagion to 
intentional imitation and emulation [30]. Jacobs and Jeannerod 
recently emphasized that “[imitation] is a folk psychology 
concept whose boundaries are presently too ill-defined for 
scientific purposes” [31]. It is difficult to realize the number of 
complex mechanisms involved in imitation, from body 
correspondence to extraction of task-relevant features [32]. Yet, 
key regions for the human imitation are the left inferior parietal 
lobule [33], possible homolog of the macaque monkey area PF, 
and the ventral premotor cortex [34], homolog of the macaque 
monkey area F5, both being the regions in the macaque monkey 
brain where mirror neurons were reported.  

More recently, resonating systems have been found in other 
domains such as empathy for pain [35], disgust [22], and led to 
the hypothesis that this generalized resonance between oneself 
and other selves, or social resonance, underlies a number of 
social behaviors such as imitation [12], action understanding 
[36], social bonding and empathy. Social resonance is central to 
the understanding of social behaviors [37], and the methods 
used to investigate it should be extended to the measure of the 
social competence of anthropomorphic artificial agents 
including robots. The underlying assumption is that the 
measure of resonance will indicate the extent to which an 
artificial agent is considered as a social inter-actor.  

 
 

3. A BEHAVIORAL MEASURE OF 
SOCIAL RESONANCE: MOTOR 
INTERFERENCE 
3.1 Canonical paradigm 
A consequence of motor resonance, motor interference is the 
influence the perception of another individual’s actions has on 
the execution of actions by the self: observing an action 
facilitates the execution of the same action, and hinders the 
execution of a different action. 
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Figure 2: top: factorial plan showing the 4 canonical 
condition of motor interference experiment: horizontally, 
the spatial congruency between the volunteers and the 
tested agent movement; vertically, the human control and 
the agent being tested, in this case the humanoid robot DB. 
Bottom: summary of the experimental result. The ratio 
between the variance for incongruent and congruent 
movements is shown for three agents, an industrial robot 
[26], a humanoid robot [38] and a human [26, 38] on the 
left, and for the humanoid robot acting with artificial 
(ART) or biological (BIO) motion [39] on the right. 
 
In one of the experimental paradigms developed to investigate 
motor interference, volunteers were asked to raise their fingers 
in response either to a symbolic cue appearing on a nail or to a 
movement of the finger of a hand presented visually [40]. The 
two cues could be present on the same finger (congruent cues) 
or on different fingers (incongruent cues). In the later case, 
there were two conflicting cues and only one was relevant for 
the volunteers. It was found that the observation of an 
incongruent finger movement hindered the response to the 
symbolic cue –increase of the time needed to respond- but that 
the reverse effect (symbolic cue hindering the response to the 
finger movement) was very small. In other word, when 
responding to a symbolic cue, the response is hindered by the 
observation of an incompatible action and facilitated by a 
compatible one. In this paradigm, producing an action similar 
to an observed action is a prepotent response that requires to be 
inhibited to execute the correct response.  
 

3.2 Application to the study of robotic 
designs 
A series of experiments was initiated by Kilner et al’s [26] 
study of motor interference when facing a real human being or 
an industrial robotic arm. Volunteers in this study produced a 
vertical or horizontal arm movement while watching another 
agent in front of them producing a spatially congruent (ie 
vertical when vertical, horizontal when horizontal) or a 
spatially incongruent (horizontal when vertical and vertical 
when horizontal) movement. The interference effect was 
measured by the increase of the variance of a movement, was 
found when subjects watched an arm movement spatially 
incompatible with the one they were producing (e.g. vertical 
versus horizontal, Figure 2) [26]. Interestingly, Kilner et al.’s 
study did not find any interference effect using an industrial 
robotic arm moving at a constant velocity, suggesting at first 

that motor interference was specific to interactions between 
human agents. 
 

3.2.1 Effect of form 
This experimental paradigm was adapted to investigate how 
humanoid robots interfere with humans. Subjects performed 
rhythmic arm movements while observing either a human agent 
or humanoid robot performing either congruent or incongruent 
movements with comparable kinematics. The variance of the 
executed movements was used as a measure of motor 
interference caused by the observed action. We found that in 
contrast to the industrial robotic arm, a humanoid robot 
executing movements based on motion captured data caused a 
significant change of the variance of the movement depending 
on congruency [38]. The ratio between the variance in the 
incongruent and in the congruent conditions increases from the 
industrial robotic arm (r=1, no increase in incongruent 
condition), the humanoid robot (r~1.5) and the human (r~2), 
both in our and in Kilner et al., experiment [26]. 
 

3.2.2 Effect of motion 
In a follow-up experiment, we investigate the effect of the 
movement kinematics on the interference. The humanoid robot 
moved either with a biological motion based, as previously, on 
recorded trajectories, or with an artificial motion implemented 
by a 1-DOF sinusoidal movement of the elbow. We found a 
significant effect of the factors defining the experimental 
conditions. The increase in incongruent conditions was only 
significant when the robot movements followed biological 
motion [39]. The ratio that could be calculated on the basis of 
the results was, in the case of biological motion, comparable to 
the ratio reported in the previous experiment, ~1.7. Note the 
importance of having internal controls, in this case human 
agents, to compare the ratio within groups. 
 

3.2.3 Effect of visibility 
Another factor capable of influencing motor resonance has been 
tested recently, and its analysis is still in progress. The effect of 
interference could be due merely to the appearance of the agent, 
which would predict a linear increase of the ratio between the 
variance for incongruent and congruent movements with 
anthropomorphism. Alternatively it could be influenced by the 
knowledge we have about the nature of the other agent. At the 
level of brain physiology, it is known that thinking we interact 
with another individual or with a computer algorithm changes 
local brain activity despite the fact that the same algorithm is 
actually controlling the interaction [41]. 

To test whether appearance was the main factor we covered the 
body and face of both agents, the human and the humanoid 
robot, with a black cloth leaving just the arm visible, and 
compared the results of the interference paradigm between 
covered and uncovered agents. Preliminary results indicate that 
the variance is increased in all conditions, implying that motor 
interference can be measured in the absence of full body 
visibility and suggesting that knowledge about the aspect of the 
agent being interacted with is sufficient to elicit motor 
resonance (bottom-down effect of the knowledge). 
Alternatively arm movements, from either a human or a 
humanoid robot, could display sufficient cues about the nature 
of the agent being interacted with to elicit motor resonance 
(top-down effect of the stimulus). Further analysis of the data, 
investigating the effect of the nature and of the visibility of the 
agents on the interference effect is still required to unravel the 
two possible explanations. A different but comparable 
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experiment derived from the motor resonance hypothesis, 
motor priming, has provided results in favor of the second 
hypothesis, a bottom-up effect due to the appearance of the 
robotic device. 
 

3.2.4 Motor priming with a robotic hand 
A very similar result has been obtained using motor priming. 
Motor priming can be conceptually conceived as a consequence 
of motor resonance opposite to the motor interference measured 
in the previous part. Its foundation is that observing an action 
facilitates (“primes”) the execution of the same action, and can 
be described as “automatic imitation”. Responses are faster and 
more accurate when they involve executing the same movement 
than executing another movement.  
This effect was investigating with two actions, hand opening 
and hand closing, in response to the observation of a hand 
opening and closing, with the hand being either a realistic 
human hand or a simple robotic hand having the appearance of 
an articulated claw with two opposite fingers [42] (see Figure 3, 
top right). Volunteers in the experiment were required to make 
a prespecified response (to open or to close their right hand) as 
soon as a stimulus appears on the screen. Response time was 
recorded and analyzed as a function of the content of the 
stimulus, either a human or a robotic hand, in a posture 
congruent or incongruent with the prespecified movement (eg 
open or closed hand when the prespecified action is opening the 
hand).  
Results showed an increased response time in incongruent 
compared to congruent conditions, in response to both human 
and robotic hand, suggesting that the motor priming effect was 
not restricted to human stimuli but generalized to robotic 
stimuli [42]. As with the motor interference measure, the size of 
the effect, taking the form of the time difference between 
response to incongruent and congruent stimuli, was larger for 
human stimuli (~30 ms) that for robotic stimuli (~15 ms). 
A follow-up experiment tested whether the effect is better 
explained by a bottom-up process due to the overall shape or a 
top-down process caused by the knowledge of the intentionality 
of humans compared to robotic devices [43]. Human hands 
were modified by the addition of a metal and wire wrist, and 
were perceived as less intentional than the original hands. 
Nevertheless in the priming experiment, no significant 
differences were found between the priming effect of the 
original and of the robotized human hand, in favor of the 
bottom-up hypothesis that the overall hand shape, and not its 
description as a human or robotic hand, affects the priming 
effect. 

Overall, these accumulating results confirm the validity of 
using motor interference as a metric of motor resonance, a 
possible proxy for social competence, with humanoid robots. 
First, motor resonance is an important aspect of social 
cognition, particularly important in automatic and unconscious 
perception of other agents. Second, the effects of motor 
interference on behavior can be measured easily, as movement 
variance or reaction time. Third, existing results strongly 
suggest the effect is modulated by the appearance of the agent 
being tested. And finally, these interference effects have been 
shown to increase with the realism of the stimulus.  

 
Figure 3: human (left) and robotic (right) hand stimuli used 
(top) in the motor priming experiment described in 3.2.4 
[42] and (bottom) in the fMRI experiment investigating 
perception of hand actions described in 4.1.2 [44]. Images 
adapted from the original publications. 
 

4. FUNCTIONAL NEUROIMAGING OF 
SOCIAL RESONANCE 
Motor resonance is not only a behavioral observation, but also, 
and in some ways foremost, a neuroscience result, for which 
interest was largely renewed by the discovery of mirror neurons 
(see 2.2.1) in monkeys and the subsequent finding of an overlap 
between brain activity in response to experiencing states and to 
observing other individuals experiencing similar states (see 
2.2.2 and 2.2.3). Thus measures of changes in brain activity in 
regions specific to motor, or emotional, resonance, depending 
on whether an observed action is executed by a real human, a 
realistic android or a humanoid robot, can provide an objective 
measure of the resonance between the observer and the 
observed agent. I will present recent attempts here. 
 

4.1 Perception of hand actions 
The first experiments focused on the observation of hand 
actions. Two independent experiments came to conflicting 
results about activity in the human premotor region thought to 
be homologous to the region in which mirror neurons were 
identified in macaque monkeys and known to be active during 
the observation of actions.  
 
4.1.1 PET experiment 
In the first experiment, volunteers observed a human hand or a 
robotic hand grasping objects while having their brain scanned 
by PET [45]. Results indicate that activity in a region of interest 
in the human premotor cortex, based on the assumption that this 
pat of the human cortex contains mirror system, failed to report 
any significant activity in response to the robotic moving 
compared to static stimuli. In contrast they reported strong 
activity in early visual areas of the lateral occipital cortex. 
 
4.1.2 fMRI experiment 
To test whether the resonance system responding to human 
action would respond to a robotic action, another group of 
researchers [44] localized motor resonance areas by looking for 
an overlap between the areas involved in motor execution and 
areas responding to the observation of movie clips of object-
directed actions depicted by a human or by a robotic hand. The 
robotic hand, in this case, consisted of a simple claw with two 
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sides allowing a simple grasp (see Figure 3, bottom right).  
Regions of the premotor cortex, both ventral and dorsal, and of 
the parietal cortex were activated strongly by the sight of both 
human and robotic complex actions compared to simple 
movement or static images, with no significant differences 
between these two agents [44].  
 

These two results appear contradictory, but a number of 
differences between the two experiments could explain this 
discrepancy. The difference of neuroimaging methodology 
could be responsible (PET and fMRI), as well as differences in 
experimental paradigm; the use of repeated stimuli in the PET 
study was advanced in [44]. Another possibility, that has not 
been proposed but would fit the results presented in the 
previous section and the thesis defended here, would be that the 
resonance system would respond differently because of the 
difference between the appearance of the robotic hand, and in 
particular their anthropomorphism. Such an interpretation 
provides a fascinating hypothesis to further investigate the 
response of the neural bases of motor resonance to robotic 
designs.  
 

4.2 Perception of emotions 
4.2.1 Presentation of the experiment 
In a collaborative work between the university of Pisa in Italy 
(Maria-Alessandra Umilta, Vittorio Gallese, Gicomo 
Rizzolatti), Waseda University in Japan (Atsuo Takanishi, 
Massimiliano Zecca) and University College London in United 
Kingdom (Thierry Chaminade, Sarah-Jayne Blakemore, Chris 
Frith), we recorded the fMRI response to emotions depicted by 
a a human or the humanoid robot. The humanoid robot Waseda 
Eye No.4 Refined II (WE-4RII, [46]) is the result of the 
integration of robotic hands into an upper body emotional 
robot. WE-4RII being designed to express human emotions, it 
contains 26 degrees of freedom for facial and head movements 
(including 4 for the neck and 8 for the eyebrows). It can express 
its emotion using facial expression, neck and waist as well as 
arms and hands motion. Both the posture and the motion 
velocity are controlled to realize the effective emotional 
expressions.  

 
Stimuli consisted of 1.5-seconds greyscale videoclips depicting 
either one of 3 emotions (Joy, Anger and Disgust) or the 
emotionally neutral Silent Speech. All stimuli started from a 
neutral pose and stopped with the emotional expression (Figure 
4). Great care was taken to match the dynamics of the human 
and robot stimuli pairwise. Two tasks were presented to the 
experiment volunteers, judging the emotionality of the stimulus 
or the quantity of motion.  

Main question was whether the regions involved in motor and 
in emotional resonance, the later depending on the emotion 
(e.g. amygdala for anger and anterior insula for disgust) would 
respond to both types of agents, and with the same intensity. In 
other words, can we find at the brain level a reduced measure of 
resonance for the robot compared to the real human. 

 
Figure 4: top: examples of happy faces from the humanoid 
robot (left) and the human (right); bottom: percentage of 
emotional ratings (mean + standard error; rating scale) for 
the three emotions and the two agents. Ratings are 
significantly higher for the human in the case of anger (***: 
p<0.001) and of disgust (*: p<0.05). 
 

4.2.2 Results 
Only preliminary observations from this unpublished work can 
be discussed at this time. First, while all stimuli were 
considered as emotional, human stimuli were judged as 
significantly more emotional for Anger and Disgust, but not for 
Joy (Figure 4). As a consequence, the difference in perceived 
emotionality is unlikely to explain fully the brain imaging 
results.  
 

The brain activity can be summarized as follows. Taken 
together, there is no activity in the motor resonance system 
when emotional stimuli are compared to neutral stimuli across 
all agents and tasks, which could be explained by the fact that 
both the target emotional stimuli and the control stimuli contain 
upper torso actions which are removed by the subtraction. 
When the effect of human and robotic agents were contrasted, 
brain responses to the humanoid robot were located in the 
posterior part of the brain, dedicated to the perception of 
objects, similar to the region already discussed in 4.1.1. In 
contrast, increased brain responses to the human were found in 
cognitively higher regions, and in particular, in regions specific 
to the perception of the three emotions, in the amygdala for Joy 
and Anger and in the insula for Disgust.  

While more analysis is needed to refine these results they do 
point to an unexpected result. Even when the stimuli are judged 
consciously as equally emotional, the brain response indicates 
that emotional resonance is restricted to the observation of 
human stimuli. Thus, as long as emotions are concerned, our 
results do not confirm an increased resonance with 
anthropomorphic robots.  
 

5. CONCLUSIONS 
Because it is a solid theoretical basis from social cognitive 
neuroscience, social resonance is a promising framework to 
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describe interactions between natural and artificial agents. 
Behavioral results, based on experimental paradigm originally 
developed to investigate human social behavior, indicate that 
motor resonance is modulated by the appearance of the agent, 
with intermediate measure for anthropomorphic robotic devices 
in comparison to non anthropomorphic devices and real 
humans. It offers a rich ensemble of objective benchmarks to 
measure the social competence of artificial agents. 
Neuroimaging also promises to be a rich tool, though at present 
there is no clearly defined experimental paradigm shared by the 
community. Further work is required to develop more efficient 
paradigm, but such approaches present the advantage of relying 
on a large amount of existing results on the resonance system in 
humans. The experiments described here can be easily 
reproduced by other roboticists to test the social competence of 
their robots, having the potential of providing a unifying 
measure allowing comparisons of various robotic designs for 
humanoids. 
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ABSTRACT
Psycholinguistic studies of situated language processing have re-
vealed that gaze in the visual environment is tightly coupled with
both spoken language comprehension and production. It has also
been established that interlocutors monitor the gaze of their part-
ners, so-called "joint attention", as a further means for facilitating
mutual understanding. It is therefore plausible to hypothesise that
human-robot spoken interaction would similarly benefit when the
robot’s language-related gaze behaviour is similar to that of peo-
ple, potentially providing the user with valuable non-verbal infor-
mation concerning the robot’s intended meaning or the robot’s suc-
cessful understanding. In this paper we report preliminary findings
from an eye-tracking experiment which investigated this hypoth-
esis in the case of robot speech production. Human participants
were eye-tracked while observing the robot and were instructed to
determine the ’correctness’ of the robot’s statement about objects in
view. Specifically, we examined the human behaviour in response
to incongruency of the robot’s gaze behaviour and/or errors in the
statements’ propositional truth. We found evidence for both (robot)
utterance-mediated gaze in human-robot interaction (people look
to the objects that the robot refers to linguistically) as well as for
gaze-mediated joint attention, i.e. people look to objects that the
robot looks at. Our results suggest that this kind of human-like
robot-gaze is useful in spoken HRI and that humans react to robots
in a manner typical of HHI.

Categories and Subject Descriptors
I.2.9 [Artificial Intelligence]: Robotics; I.2.7 [Artificial Intelli-
gence]: Natural Language Processing; J.4 [Social and Behavioral
Science]: Psychology

Keywords
gaze, joint attention, incongruency, utility

1. MOTIVATION
People have developed very subtle and complex strategies to com-
municate effectively, seamlessly integrating a variety of non-verbal

signals during spoken language communication. Gaze as well as
gestures, facial expressions and para-verbal feedback constitute some
of these signals and they enrich communication in many social as-
pects and establish robustness. They help to convey information
about attitude, emotional or belief state or simply coordinate the
conversation by indicating turn-taking actions and let the partner
know what the current focus of interest is. Psychological studies
have revealed, for example, that gaze in the visual environment is
tightly coupled with both spoken language comprehension [7, 8,
14] and production [10, 4]. It has also been established that in-
terlocutors monitor the gaze of their partners (see e.g. [3] for a
comprehensive account of joint attention). It is therefore plausi-
ble to hypothesise that human-robot spoken interaction would sim-
ilarly benefit when the robot’s language-related gaze behaviour is
similar to that of people: not only would such behaviour imply
human-like language processing, but it also provides the user with
valuable non-verbal information concerning the robot’s intended
meaning (during robot production) or the robot’s successful under-
standing of a user utterance (during robot speech recognition). In
this paper we present work in progress and report findings from an
eye-tracking experiment which investigated this hypothesis in the
case of robot speech production.

Considerable work has already been done on gaze in HHI as well
as robot gaze in HRI, e.g. during turn-taking [2] or with respect to
information structure of the generated utterance [12]. Robot gaze
generally in conversational engagement and in relation to some ref-
erence resolution has been explored by [13] among others and it
could be established that the perception of robot gaze is coupled to
the robot’s head orientation [6]. The psychological findings from
HHI, that have motivated our work, however, have not yet been ap-
plied in HRI . The role of utterance-mediated gaze in production as
being tightly coupled to overall apprehension of an utterance has
been established by [4], for instance. It has been shown, for ex-
ample, that referential gaze is part of the planning process of an
utterance and, thus, precedes the onset of the corresponding lin-
guistic reference by approximately 800msec - 1sec. [9]. On the
other hand, studies investigating gaze in comprehension, have re-
vealed that listeners use speakers’ gaze to identify a target before
the linguistic point of disambiguation which clearly distinguishes
utterance-mediated and gaze-mediated visual attention [5]. This
study shows that gaze helps to identify possible referents of an ut-
terance, even when the speaker’s gaze was initially misleading due
to the experimental setup. Subjects could establish a mapping of
the speaker’s gaze to their own visual scene and, thus, make use
of the speaker’s gaze during comprehension nevertheless. It is not
clear that these insights from investigations of human cognitive be-
haviour can be mapped directly onto human-robot communication.
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Robots differ in many ways as their physical means are distinct
from ours. Robots do not possess the same amount of experience
and world knowledge nor are they typically familiar with our com-
municative conventions. Hence, it is our general aim to investigate
to what extent insights from human utterance-mediated gaze be-
haviour are sensibly applicable to robot gaze.

Our interest and the presented study focus on utterance-driven gaze
behaviour by the robot, e.g. fixations towards an object before it is
mentioned. Human gaze can then be observed in response to both
the robot’s speech (utterance-mediated attention) and the robot’s
gaze itself (joint attention). We conducted an initial experiment to
show that our experimental design is generally valid and yields ob-
jective measures like decision/response times as well as the distri-
bution of fixations to regions in the scene (which may bear evidence
for other subjective/social factors). The scenario we have created
is that of a robot describing a situation in blocksworld manner and
simultaneously producing fixations to referenced objects. Human
participants were eye-tracked while observing the robot and were
instructed to determine the ’correctness’ of the statement. Induced
errors include incongruency of the gaze behaviour and/or errors in
the statements’ logical truth. These potentially reveal both the sub-
ject’s attitude towards the robot as well as the utility of robot gaze
in assessing validity of the robot’s statements.

2. EXPERIMENT

2.1 Purpose and requirements

The presented pilot study aims to provide general empirical sup-
port for our hypothesis and method. Thus, its results provide only
cues for further research trying to answer questions concerning the
utility of robot gaze. If, indeed, gaze is a significant element of
HRI then we can assume that inappropriate gaze behaviour may
lead to some kind of disruption or slow-down in communication.
In contrast, when the behaviour is consistent with (yet to be estab-
lished) HRI conventions, we might expect interaction to be more
fluent and efficient and, consequently, the acceptability and natu-
ralness to rise. In this case, our longer term goal will be to find out
what those gaze conventions are and what constitutes optimal robot
gaze.

To begin investigating these issues, we require an experimental de-
sign that allows us to control the type and the occurrence of gaze
and speech errors that might occur in robot speech production. Si-
multaneously, a method is desired that enables the experimenter to
precisely observe the human subject and measure the reaction. A
video-based setup fulfills these conditions by allowing the experi-
menter to very carefully plan and control errors and timing off-line
while the subject’s reaction can be recorded using an on-line eye-
tracking technique. Although it might be argued that this is not real
interaction, it has been shown that a video-based scenario without
true interaction yields similar results to a live-scenario and can be
considered to provide (almost) equally valuable insights into the
subject’s perception and opinion [17].

2.2 Methods

2.2.1 Participants

Ten students of various subjects, all enrolled at Saarland University
and native speakers of German, took part in this pilot study. They
had mostly no experience with robots nor with eye-tracking. They

were told that the eye-tracker camera was monitoring their pupil
size and, thus, the cognitive load of the task on them.

2.2.2 Material

Each video-clip showed a PeopleBot robot 1 onto which a stereo
vision camera on a pan-tilt-unit was mounted, as it stood behind a
table with a set of coloured objects in front of it. The objects were
plain geometrical shapes of different colours. Two objects of the
same shape - but of different colours - were target and distractor
objects in a corresponding sentence. The video-clips each showed
a sequence of camera-movements (that are called fixations for the
human eye) towards either an object on the table or the assumed
interaction partner, i.e. straight ahead. At the same time, a synthe-
sised sentence of the following form was played back:

(1) a. ”Next to the cylinder is a pyramid which is orange.”
b. ”Next to the <ANCHOR> is a <TARGET> which is

<COLOUR>. (as coded for analyses)
c. ”Neben dem Zylinder steht eine Pyramide die orange

ist.” (original german sentence)

The robot fixations and the spoken sentence were timed such that
a fixation towards an object happened approximately one second
prior to the onset of the referring noun which is consistent with
psychological findings about the co-occurrence of gaze and refer-
ring expressions in human-human interaction [4, 16]. We can thus
study two types of reactive human gaze: one being elicited by robot
gaze (joint attention), the other being utterance-mediated (inspect-
ing mentioned objects).

  

Next  to  the   cylinder is   a    pyramid  which  is  orange.SPEECH:

<partner >  <cylinder>   <orange pyramid> <partner>GAZE:

TIME:

(sec) 1 2 3 4 5 6 7 8

IPs:
     1      2     3     4       5  6         7

2: The timing of utterance-driven robot gaze, for sentence (1)

The presented videos were segmented into interest areas (IA) by
means of bitmap templates, i.e. each video contained regions that
were labelled e.g. "head", "table". Thus, the output of the eye-
tracker could be mapped onto these templates yielding a certain
number of hits for each IA. The spoken utterance is a sentence like
example (1) describing the relation between a couple of objects.
For our analysis the ”cylinder” is encoded as the anchor reference
and object, the ”pyramid” is the target reference but may refer to
the target object or the distractor object since there are two ob-
jects of the same shape, and the adjective ”orange” is the linguistic
point of disambiguation (LPoD). A similar design, also featuring
late linguistic disambiguation with early visual disambiguation by
means of gaze-following, was already successfully tested in a study
on human-human interaction by [5].

Based on the onsets and offsets of the encoded linguistic events we
segmented the video/speech stream into 7 interest periods (IP). The
1very kindly provided by the DFKI CoSy group:
http://www.dfki.de/cosy/www/index.html and much appreciated
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(a): Gaze straight ahead... (b): ...to anchor, (c): ...to distractor, (d): ...and straight ahead.

1: Frame sequence depicting a false-gaze condition (ti or fc) for sentence (1).

IPs encode the distinct time regions when the robot fixates an ob-
ject and when it refers linguistically to an object (see figure 2). IP 7
is special, as it encodes the response time of the subjects, i.e. from
the LPoD until the button pressing event, and is therefore a depen-
dent variable. Because we are interested in the fixations occurring
during that time period we included it as an interest period in our
analyses. Note that although IP 7 varies in length it is typically
longer than the other IPs and hence more fixations occur within it.
This IP is to be analysed by itself with focus on the differences
among the conditions.

Condition
Spoken sentence:

Gaze towards:

true - 
congruent      (tc)

 Next to the cylinder is a pyramid which is turquoise.

         <cylinder>    <turquoise pyramid>    

true - 
incongruent   (ti)

Next to the cylinder is a pyramid which is turquoise.

         <cylinder>    <orange pyramid>                

true -
no gaze          (tn)

 Next to the cylinder is a pyramid which is turquoise.

<no gaze>

false - 
congruent      (fc) 

 Next to the cylinder is a pyramid which is orange.

         <cylinder>   <orange pyramid>               

false -
incongruent    (fi)

 Next to the cylinder is a pyramid which is orange.

         <cylinder>   <turquoise pyramid>            

false -
no gaze          (fn)

 Next to the cylinder is a pyramid which is orange.

<no gaze>

3: 3 x 2 conditions and samples.

A set of six items was constructed and each item was created in all
six conditions resulting in a total of 36 video clips. The six condi-
tions are shown in figure 3. We manipulated robot gaze behaviour
as follows: gaze towards the correct target in the context of the de-
scribed scene, gaze towards an incorrect object and no gaze during
the utterance at all. Each gaze behaviour appears with a true or
false statement about the spatial relation between two objects. The
result is a set of six conditions: a true statement with no gaze (tn),
with congruent correct gaze (tc) or with gaze towards an incorrect
distractor object (ti), and a false statement combined with no gaze
(fn), congruent gaze towards the mentioned but incorrect distractor
object (fc) or incongruent gaze towards the correct but not men-
tioned object (fi). As shown in example (1) and figure 3 the general
sequence of events in each item is as follows: the robot fixates the
anchor object and then refers to the anchor linguistically, then - de-
pending on the condition - the robot looks at the target or distractor
object and subsequently it refers to either object linguistically be-
fore reaching the point of linguistic disambiguation (LPoD) which
is the utterance of the colour towards the end of the sentence. The
robot then looks back up towards the interlocutor. Note, that in the
no gaze-conditions, the robot performs a quick glance at the visual

scene before starting to speak and then remains still. This is to en-
sure that even though there is no relevant robot gaze behaviour the
scene looks more or less natural.

2.2.3 Procedure

An EyeLink I head-mounted eye-tracker monitored participants’
eye movements. The video clips were presented on a 21-inch color
monitor. Viewing was binocular, although only the dominant eye
was tracked and participants’ head movements were unrestricted.
For each trial, a video was played and its last frame remained on the
screen until an overall duration of 11 seconds was reached. After
a drift correction interlude the next video clip was presented. Prior
to the experiment, the participants were instructed by a short text
to attend to the scene and decide whether the robot was right or
wrong. They were told that the results were used as feedback in
a machine learning procedure for the robot. Next, the camera was
setup and calibrated manually using a nine-point fixation stimulus.
The entire experiment lasted approximately 25 min.

2.2.4 Predictions

If, indeed, this cognitively motivated robot gaze behaviour is bene-
ficial, we expect incongruent gaze behaviour to cause a slow-down
in cognitive processing measurable by recording decision/response
times and possibly disruptions in fixations. Concerning response
times we expect generally slower response times for false state-
ments as this is a typical effect reported of in the literature (e.g.
in the case of response times for match/mismatch tasks [15]). The
three gaze conditions by themselves (congruent, incongruent, no
gaze) are also expected to yield differences: congruent gaze should
facilitate understanding and elicit faster response times than incon-
gruent gaze. In the neutral no gaze-conditions there are two possi-
bilities. Either this condition elicits the fastest response times be-
cause participants generally pay little attention to the robot’s gaze,
simplifying on-line information complexity. Or the neutral condi-
tion’s response times lie between the congruent and incongruent
conditions since there is neither supportive nor disruptive informa-
tion conveyed.

With respect to participants’ fixations we expect to observe gaze-
following. That is, we predict that people fixate those objects or
regions that the robot looks to. When the robot gazes towards the
(incorrect) distractor object we still predict an increase in (gaze-
mediated) looks towards the distractor by the participants. Gener-
ally, we anticipate that incongruent gaze behaviour - when robot
gaze and robot utterance refer to distinct and incompatible objects
- will elicit saccades between these two objects (target and distrac-
tor). Furthermore, we expect to observe utterance-mediated gaze.

Workshop on Metrics for Human-Robot Interaction 2008, March 12th, Amsterdam

55



Once the robot’s speech identifies an object or scene region we pre-
dict increased looks by our participants towards this region.

The most critical IPs, with regard to our predictions on gaze-mediated
looks, are IP 1 and 3, which correspond to robot gaze movements.
Most critical, with respect to utterance-mediated fixations, are IPs
2 and 4 (and possibly the subsequent one respectively) which cor-
respond to the periods when the robot refers to an object linguisti-
cally. Further we similarly anticipate saccades between the target
and the distractor during the response time period (IP 7) because
we expect people to visually assure their decision and check all
possible referents before giving the answer.

3. RESULTS
Response Times
The analysis of the response times, i.e. the time from the mention-
ing of the LPoD until a button press for either ’true’ or ’false’ was
recorded, revealed that the false-incongruent condition (fi) results
in the slowest response (figure 4). An unpaired t-test confirmed
that fi-responses were significantly slower than ti-responses (true-
incongruent): the difference in means is 375.13 msec with a 95%
confidence interval of 375.13± 1.96 ∗ 117.85 = (144.14, 606.1)
with t(ti,fi)= 3.18 > t(p < 0.001, df = 128).

4: Average response times in msec for each condition, including
upper and lower bounds for

The expected and observed general tendency for wrong statements
to elicit longer response times than true statements is apparent in
the graph as well. The no gaze-conditions are neither faster nor
slower than the gaze-conditions which suggests that people do make
use of robot gaze and are not finding it distracting or annoying (even
though it often is wrong in this study). The slow response time for
false-incongruent trials suggests that the participants had difficulty
to determine correctness especially when a statement was false (i.e.
the robot referred to the wrong object) although the robot was fix-
ating an object that would have been correct to mention in this sit-
uation. This is consistent with our hypothesis that robot gaze is
useful. In particular when it is used correctly by the robot, the gaze
modality becomes a competitor to the language modality - at least
in those cases where the utterance conveys unexpected or wrong
information.

Furthermore the condition true-incongruent yields considerably faster

response times than the other two true conditions (tc, tn). This
initially surprising result still supports the hypothesis that gaze is
useful - even when it is wrong - by yielding faster results than the
no gaze-conditions. Considering the design of the pilot study, i.e.
without fillers and the same gaze and sentence pattern for each trial,
it is not surprising that people adjust and learn to recognise wrong
gaze behaviour faster. In fact, this may cause some distortion of
the response times in general. However, when both robot gaze and
the spoken sentence are congruently referring to a wrong object
(i.e. the statement is logically false), the response times are still
considerably slower than the remaining four conditions (tn, fn, tc,
ti). That suggests that even though both modalities are wrong, and
obviously so, their congruency elicits longer response times and,
hence, seems to pose a higher cognitive load.

Another interesting effect is revealed by the number of incorrect an-
swers and those that were not given at all. It occurred several times
that subjects did not press a button at all. Out of 8 omitted answers,
6 occurred in a true-no gaze condition and 2 in a true-incongruent
condition. Incorrect answers were given in 22 trials, out of which
14 occurred in an incongruent condition and 5 in a no gaze condi-
tion. This makes an overall error of 7 % of all trials. The omitted
and incorrect answers in trials featuring incongruency add up to 16
(53 % of all errors) and in trials without any directed robot gaze
there are 11 incorrect answers (37 % of all errors), whereas only
3 incorrect answers where found in congruent trials. Again, this
supports the claim that (congruent) gaze contributes to successful
understanding even when produced by a robot.

Fixations
An initial analysis of the average number of fixations over all sub-
jects per condition and per interest period (IP) and interest area
(IA), here robot head and table, shows that there is a general rise
in absolute number of fixations to the table area as soon as the first
object is mentioned. After a slight decline towards the end of the
sentence the number rises again considerably in the time period be-
tween the LPoD and the moment the subject presses the button.
During the same IP the average number of fixations on the robot
head rises as well. This may be due to the relief of concentra-
tion after the sentence has ended (and people had time to inspect
the head) or may simply be the default gaze direction, i.e. straight
ahead.

anchor

target
distractor

5: IAs ’head’, ’left’ and ’right’

In a more fine-grained
analysis, we have looked
at three IAs, one be-
ing again the robot head
and two more where the
table area has been di-
vided into two parts, left
and right. In half of
the trials the anchor ob-
ject and the target ob-
ject are positioned in the
right half of the table
area whereas the distrac-
tor object lies in the left
area of the table, and vice versa for the other half. We therefore
refer to the area that contains the referent and target objects as
the target area and to the other side of the table as the distractor
area. This kind of segmentation allowed us to observe whether par-
ticipants followed the robot’s gaze movement without fixating the
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robot head directly. As a result we observed a general bias for fix-
ations on the left side of the table. This becomes evident in figure
6 which shows the control condition no gaze (tn, fn). IP 1 and 2 in
this chart show a clear preference for looks towards the left side of
the table independently of where the anchor/target objects are posi-
tioned. This bias is commonly observed, reflecting general human
scan patterns. From IP 3 on, however, utterance-driven fixations
can be observed showing the expected preference for the area con-
taining the mentioned anchor/target.

  

1     2    3     4         5      6  7

  “Next to the  <anchor>  is a   <target> which is <colour>.”       [button]

IAs

IPs

6: Average number of fixations in the neutral no gaze-conditions,
with target being on either the right or left side. L and R on the
x-axis denote the IAs ’left’ and ’right’.

In figure 7 we have plotted the average number of fixations in IPs
1-4: 1, 3 depicting mainly robot gaze-mediated fixations (joint-
attention) and IP 2, 4 showing mainly utterance-mediated fixations.
Note, that RR, RL etc. denote the direction and therefore congru-
ency of gaze movements, i.e. towards the right side of the table (tar-
get area) and again rightwards is correct gaze movement, the abbre-
viation is thus RR. RL indicates gaze movement towards the anchor
(target area) and then to the left side of the table where the distractor
object is located. For IPs 1 and 3 we detected more fixations on the
anchor/target area than in the distractor area, notably already before
the object was actually mentioned. The result is significant accord-
ing to the paired t-test, for instance in IP 3 for the target on the left
side: mean difference x̄L = 1.92 fixations in a confidence inter-
val (1.68, 2.15) with t(x̄L) = 16.13 > t(p < 0.001, df = 131).
And accordingly for the target on the right side: mean difference
xR = 1.08 fixations in a confidence interval (0.805, 1.354) with
t(x̄R) = 7.714 > t(p < 0.001, df = 131).

The same effect, i.e. a significant rise in fixations towards the object
that is (now linguistically) referred to, is visible in IPs 2 and 4 and
is continued throughout the rest of the trial. The most critical region
is IP 3 where the robot’s gaze is either turned towards the target or
the distractor object at the other side of the table. At this stage it
becomes evident whether subjects believe that the robot gaze is an
early indicator of what is going to be mentioned next. Our record-
ings reveal only a slight increase of fixations towards the distractor
as a reaction to robot gaze towards the distractor object. The exper-

imental design may prevent a stronger effect because the repeated
gaze pattern in the items allows the participants to predict what is
going to happen.

  

1          2          3  4  

     

“Next to the     <anchor>      is a           <target>   .....

IAs

IPs

(a): Here IA ”L” contains anchor and target...

  

1          2          3  4  

     

“Next to the     <anchor>      is a           <target>   .....

IAs

IPs

(b): ...while here IA ”R” contains anchor and target.

7: Anchor/target on one side of the table, distractor on the opposite
side. Depicted are IPs 1-4 showing gaze- and utterance-mediated
fixations.

IP 7 is plotted in figure 8 which depicts the distinct conditions
within the decision time period, i.e. from the disambiguating ad-
jective until the button press event. This reveals that a false state-
ment leads to a significantly higher number of fixations in the dis-
tractor area than is the case for true statement trials: mean dif-
ference of average fixations on the distractor area and on target
area (for target/left side) is x̄L = 1.38 fixations in a 95% confi-
dence interval (0.645, 2.115) with (un-paired) t(x̄L) = 3.373 >
t(p < 0.001, df = 130), and similarly for target/right side: x̄R =
1.755 fixations in a confidence interval (1.003, 2.507) with t(x̄R)
= 4.5726 > t(p < 0.001, df = 130). This result is not surprising
as giving wrong answers typically affords slightly longer response
times (as reported in the previous section) which should also be re-
flected in the direction and number of fixations performed during
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that time. However, we did not observe the expected difference
with respect to congruency at this stage. That is, a true statement
yielded similar fixation results independently of the correctness of
the robot-gaze. It is likely that this is due to the relatively easy
spatial arrangement and the long time period until a decision is de-
manded such that participants can look around extensively before-
hand.
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(a): Distractor object lies on the
right...

Sheet7

Page 1

L R H

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

 IP 7, anchor/right

FALSE

TRUE
A

v
e

ra
g

e
 #

 F
ix

a
ti
o

n
s

L R H

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

 IP7, anchor/left

FALSE

TRUE

A
v
e

ra
g

e
 #

 F
ix

a
ti
o

n
s

(b): ...and here on the left side.

8: Fixations for true/false statements during response time period.

4. DISCUSSION
We found clear evidence for (robot) utterance-mediated gaze in
human-robot interaction: people look to the objects that the robot
refers to linguistically. This is not a surprising result but it is useful
nonetheless as it confirms typical human behaviour in response to
robot speech and gaze (even in video-based interaction). Further
evidence was collected during the response period: we registered a
strong tendency of the participants to fixate both the target and the
distractor object when the statement was false. In those cases, the
uttered sentence referred to the distractor object linguistically and
people looked more often towards the distractor object than in those
trials where a true sentence was uttered. We also found clear evi-
dence for gaze-mediated joint attention, i.e. people look to objects
that the robot looks at. IP 1 was the period immediately preceding
the linguistic reference to the anchor and already then participants
looked towards the anchor. These results support our hypothesis
that human-robot spoken interaction is governed by principles sim-
ilar to HHI. When the robot’s language-related gaze behaviour is
similar to that of people we observe human gaze patterns that are
typical for HHI.

Moreover, the reported response accuracies suggest that generally
incongruent robot behaviour (i.e. divergence of both modalities speech
and gaze) is causing confusion. The measured response times are
slightly more difficult to interpret. False statements elicited slightly
longer response times which is typical human behaviour. We also
found that the false-congruent condition response times were sig-
nificantly slower than in the true-incongruent condition (which seems
to contradict the evidence from response accuracy). However, this
could suggest that the coherence of the modalities in the (wrong)
fc-condition leads to stronger doubts about the truth of the state-
ment than in the ti-condition. The ti-condition in which robot gaze
is wrong while the linguistic statement is true seems to allow fast
reference resolution. Considering the design of the pilot study, i.e.
without fillers and the same repetitive gaze and sentence pattern
in each trial, we assume that people adapt to the task and learn to
recognise early when gaze is erroneous which may generally distort
response times.

The effects we found were not always in accordance with our pre-
dictions. We assumed, for instance, that incongruent robot-behaviour

elicits more fixations on both potential referents, target and dis-
tractor, during the linguistic utterance and during decision making.
This was partially observed in the latter interest period for false
statements. The direction of the robot gaze, however, seemed to be
irrelevant for the final decision process. For wrong gaze we did not
observe a particular rise in fixations towards the distractor area in IP
3 either. This IP comprises the robot-gaze movement towards the
target or distractor object and, thus, reports gaze-following. Pre-
sumably this again is due to the fact that the course of events in a
trial becomes predictable after a while.

5. CONCLUSIONS AND FUTURE WORK
We have shown that, in principle, it is possible to use detailed in-
sights into human cognition and behaviour to enrich human-robot-
interaction. The presented evidence shows that this kind of robot-
gaze is beneficial in HRI and that humans react in a manner typical
of HHI to both robot speech and robot gaze. We predicted that in
case one or both robot modalities are infelicitous a slow-down of
the interaction would be measurable by response times and fixation
distributions. Our results support this hypothesis and reveal several
cases where incongruent robot behaviour leads to slower response
times or disruptions in the usual distribution of fixations.

The presented study also shows that the methods we used to mea-
sure the effects and success of the robot behaviour objectively dur-
ing robot production are generally appropriate and effective. How-
ever, we found some weaknesses in the experimental design such
that the obtained results, although promising, are only preliminary.
The spatial arrangement of the scene, for instance, is small and
simple. A larger area with more complexity could lead to clearer
results concerning the robot gaze-mediated fixations, i.e. the robot
gaze could be considered more useful for early referent resolution.
The presentation of the items is going to be interleaved with the
presentation of filler videos which differ from the items and enforce
gaze reliability. This ensures that the participants will not be able
to predict what the robot is going to do. More crucially, the presen-
tation of mostly true-congruent fillers will influence the trade-off
between cost and benefit of robot-gaze for information processing
during communication: the more errors occur in the trials the like-
lier will participants decide to ignore gaze as a source of informa-
tion. If, however, gaze is mostly a useful early indicator for correct
reference resolution, its benefit for on-line comprehension should
override the extra costs caused by errors. Furthermore, we have put
a lot of emphasis on congruency in this study but designed a task for
the subjects that focusses on the truth value of the linguistic state-
ment alone. In order to emphasise the effect of incongruency we
plan to change the task such that subjects are required to consider
the robot performance more holistically, e.g. ”If you think the robot
is wrong, tell it what is wrong”. There is a trade-off here between
simplicity in measurements: we lose the option to record response
times but we gain additional information on what the participants
expected of the robot and what they actually perceived. This is
possible because incongruency arises from different errors made
by the robot: either the linguistic reference is incorrect or the gaze
is incorrect. This failure may be attributed to incorrect wording (as
in ’correct gaze but false statement’ = ti), incorrect judgement of
the spatial relations, errors in visual (colour) processing, erroneous
gaze movement etc. Thus, by asking the participants to actively de-
cide which object was meant and why the error occurred, we also
learn more about the ”theory-of-mind” (ToM) that people ascribe
to the robot and how robot gaze contributes to forming a ”theory-
of-mind” (see e.g. [1] for work on ToM among humans and [11] for
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research on apes). With increasing communicative competence of
robots it becomes more and more interesting to investigate people’s
attitude towards robots.
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ABSTRACT
Human interaction knows many non-verbal aspects. The
use of space, among others, is guided by social rules.
Not conforming to these rules may cause discomfort or
even miscommunication. If robots are to interact with
people, they must follow similar rules. The current work
tries to identify factors that influence human preferred
interaction distance in conversation-like interaction.

For the measurement of interaction distances an accurate
and objective visual method is presented. In this method,
the researcher does influence the results by disturbing the
interaction.

It is found that subjects choose interaction distances com-
parable to those in human interaction. Variations are
mostly explained by subject age and, depending on age,
by gender or robot appearance. This is the first time,
to our knowledge, that a clear age and gender effect is
found in human-robot interaction-distance.

Categories and Subject Descriptors
I.4 [Computer Applications]: Social and behavioral
sciences — Psychology ; I.2.9 [Artificial Intelligence]:
Robotics — Commercial robots and applications; H.5
[Information Systems]: Information Interfaces and Pre-
sentation (e.g., HCI) — Benchmarking

General Terms
Measurement, Experimentation, Human Factors

Keywords
Proxemics, Human-Robot Interaction, Visual Measure-
ment

1. INTRODUCTION
∗The authors were supported by EU Integrated Project
COGNIRON (”The Cognitive Companion”) FP6-002020.

Advancements in artificial intelligence enable the cre-
ation of more intelligent robots that can perform a greater
array of tasks, making it more realistic and even desirable
to bring them into the house or office. People are social
beings however, and human interaction is guided by so-
cial rules. While people can learn to adapt to robots, the
robots should be made to follow similar rules that will
make the interaction natural and require no extra effort
on the human part. The current research tries takes an
approach from the sociological concept of proxemics.

Recent research has indicated the influence of robot ap-
pearance [4], subjects’ personality [8] and type of inter-
action on the interaction distance. The typical setups of
those experiments were inside the laboratories, where col-
leagues/volunteers got clear assignments about the type
of interaction that should be started. The research re-
ported here is performed in a free setting during an arts
and technology festival, with the subjects unaware of the
experiment performed. This resulted in a large number
of interactions, with variety in age and gender which is
difficult to reproduce in robotics laboratories.

1.1 Proxemics
The field of proxemics is concerned with interpersonal
distance and personal space. The term was coined by
the anthropologist Edward T. Hall in his 1966 book the
hidden dimension. In this book, Hall uses findings from
the animal kingdom and insights in human experience
of space to define four personal spheres. These spheres
define areas of physical distance that correlate reliably
with how much people have in common (cultural differ-
ence). Where the boundaries of these spheres exactly lie
is additionally determined by factors such as gender, age
and culture [2, 3, 5]. When one comes too close to an-
other, the other may feel crowded or intimidated. If, on
the other hand, one stays too far back, this is seen as
awkward and one may be perceived as cold or distant.
Appropriate distances found by Hall in western culture
for adults of both genders are displayed in Table 1.

1.2 Human Interaction
To explain the locations of these boundaries, Hall theo-
rizes that they coincide with the boundaries of sensory
shift. At different distances, touch, vision, hearing but
also smell may be optimal, distorted, or not available at
all. Physical properties also come into play, such as an
arm’s length, which defines the distance from where one
can touch the other, or two arms’ length, which defines
the boundary where interaction partners can cooperate
to make physical contact [2].
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Table 1: The four spheres of physical distance
corresponding to cultural difference according to
Hall.

Designation Specification Reserved for ...
Intimate distance 0 - 45 cm Embracing,

touching, whis-
pering

Personal distance 45 - 120 cm Friends
Social distance 1.2 - 3.6 m Acquaintances

and strangers
Public distance > 3.6 m Public speaking

1.3 Human-Robot Interaction
In proxemics studies, the focus lies on human-human in-
teraction. However, when one interaction partner is a
robot, it is not well known to what extent the different
factors of human proxemics still apply and what new fac-
tors play a role. Moreover, since robots typically do not
have an odor or body heat, sensory input can no longer
explain or predict appropriate distances, even if the lim-
itations on vision and hearing may still apply.

While human-robot proxemics may follow a similar pat-
tern as human and animal proxemics in having distinct
zones, no assumptions about such existence or the lo-
cations of possible boundaries are made in the current
research. Instead, the focus is to identify factors that
influence interaction distance and their effect. In Sec-
tion 1.4, a list is presented of such possible factors, all of
which were included in the empirical study. Along with
the description of each factor, a rationale to include it is
given. Factors that were not included were factors that
are irrelevant for a robotic interaction partner, such as
body heat or smell.

1.4 Included Factors
Robot type could count towards the cultural difference
equivalent of human-robot interaction. People may pre-
fer to interact with a robot with which they have more
in common or with which interaction is easier due to the
height and shape. This would translate into more fre-
quent observations of interaction with a certain robot,
but may also influence the preferred distance. Specifi-
cally robot height and shape was investigated.

Although Hall doesn’t mention subject height as a fac-
tor, there are studies that do take it into account because
height difference influences face-to-face distance [5]. In
addition, when adjusting a screen or monitor, appropri-
ate height and orientation are meant to achieve a neutral
neck position and minimal neck movement at the opti-
mal viewing distance. Since subjects had no control over
screen height and orientation, they might have chosen a
different distance instead to view the screen at a more
comfortable angle.

Since subject gender is an important factor in human
proxemics [3, 5], it may also play a role in human-robot
proxemics. This point is complicated by the fact that
the robots used in this experiment represented a person
whose gender might be of influence. The operator’s gen-
der was left out of consideration however, since the op-
erator’s gender was only obvious for the Mobi Sr. robot,
and its operator could change at any time (see Sections 2

and 3.1). Since the measurements are pooled, any gen-
der effects found would then represent how men’s and
women’s preference are different in regard to a gender-
less robot.

Subject age is a factor in human cultural difference and
therefore in human proxemics [2, 1], thus it might also
be of influence in human-robot proxemics. The same
complication as with the operator’s gender arises, and it
is disregarded on the same grounds.

When the location of interaction is crowded with peo-
ple, it may be impossible for a subject to keep the pre-
ferred distance since doing so might bring him or her un-
desirably close to one or more other people. Since only
the upper bound of distance options is limited, subjects
are forced to stand closer to the robot. However, in such
a situation the subject is also forced to stand closer to
other humans. It would be interesting to see how the
subject resolves this shortage with respect to the relative
amount of distance the subject gives up to the robot and
other humans.

1.5 Hypotheses
Based on the inclusion rationales for each factor, we
formed the following hypotheses:

• Children prefer the smaller robot, which means more
observations with it and smaller distance compared
to Mobi Sr.

• Height difference between subject and robot causes
greater distance.

• Men will stand closer because of affinity for tech-
nology

• Younger people will stand closer as they do in hu-
man interaction [1].

• Spatial constraints caused by crowding cause smaller
distance.

2. MATERIALS
Two robots were used in the current experiment. They
could be controlled by volunteers through a desktop com-
puter to which the robots were connected via a wireless
network.

2.1 Robot 1: Mobi Sr
The first robot, called Mobi1 Senior (Figure 1), was ap-
proximately 175 cm tall and had a round base with a di-
ameter of 66 cm with semi spheres sticking out to cover
the support wheels. It was driven by two wheels left and
right of the centre of the base, and balanced by 4 pas-
sive wheels around the base. The robot was not made to
resemble human form. In spite of this, it was intended
to be a communication device. It was equipped with a
monitor which was mounted at the top of the robot at
eye level. This monitor showed a video feed that was
sent from a webcam at the operator’s computer showing
the operator’s head and shoulders, as is typical for a web
conference. The robot had a webcam mounted directly
above the robot’s monitor allowing the operator to view

1Mobile Operated Bi-directional Interface
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Figure 1: Two people interacting with Mobi Sr.

the remote location. In addition, the robot had stereo
speakers and a microphone, and the operator’s computer
had a stereo headset and a microphone as well, enabling
two-way audio communication between the operator and
an interaction partner. The operator could move the
robot back and forth and rotate it left or right around
its axis by using the arrow keys on the local keyboard.

2.2 Robot 2: Mobi Jr
A second, smaller robot was used called Mobi Junior
(Figure 2). It had many of the same features as Mobi
Senior, with the most notable exceptions of lacking a
monitor to show the operator, and being only 112 cm
tall. It had a square base with rounded edges and was
60 cm wide and deep. In addition, Mobi Junior’s op-
erator also had camera controls to aim the camera any-
where between 28 deg up and 25 deg down. Its shape was
quite different, but apart from this, Mobi Junior also had
stereo speakers and a microphone, allowing the same two
way audio communication, and a webcam mounted in a
round head to allow the operator to see the remote lo-
cation. Mobi Junior was designed to appeal to children,
who might have trouble seeing the monitor on Mobi Se-
nior and who would be too short to be seen by its camera,
or who might be intimidated by such a tall mobile device.

3. METHODS
3.1 Setting
The robots were showcased during a three day arts and
technology festival. This festival was held in a former
factory and covered three large halls. There was a stand
belonging to the Mobi team where visitors could volun-
teer to operate either robot. There were two large screens
at the stand facing the hall where visitors could see the
video feeds from the robot cameras. Both robots could be
directed to any location within the halls from the stand
through a local wireless network. Visitors were free to
take control of the robots or to interact with them. Peo-
ple from the Mobi team were present at the stand to give
information about the robots and instructions on how to

Figure 2: A girl interacting with Mobi Jr. and
two bystanders (faces have been blurred).

control them, and at the robots’ locations to answer any
questions.

3.2 Procedure
To determine the appropriate distance the robots would
need to keep, measurements were made on the distance to
the robots that people voluntarily chose in different sit-
uations. A prospective observational design was chosen
to ensure ecological validity. All approaches were vol-
untary and without knowledge of the experiment. Vol-
unteer operators were not instructed to stop moving the
robot during interaction with people, but consistently
did so. Interactions were not included until the interac-
tion was established and the robot had stopped. Digi-
tal photographs were taken of interactions and were an-
alyzed later (see Section 4.4). Subjects were included
more than once only if they were observed in different
situations with respect to crowdedness, and only once
per crowdedness category (see below). Photographs typ-
ically showed several people each, sometimes in a small
crowd. It was not unusual to have more than one in-
teraction per photograph, with a maximum of five. Out
of all taken photographs, 72 were used for distance mea-
surement, depicting 106 subjects in 140 observations.

Additionally, frequencies were collected of observed in-
teractions between age group and robot type. Subjects
were included only once, even if they were included more
than once in distance measurement. Photographs that
were unsuitable for distance measurement could be in-
cluded in this tally if the pictured subject was not yet
seen in the distance measuring photographs and if the
interaction met the previously stated requirements. For
age group/robot type frequencies, 135 unique subjects
were counted.

Because of the observational nature of the experiment,
subjects were not approached by the researcher to fill
out any questionnaires. Therefore, subject length had
to be measured on the photograph (see Section 4.4) and
subject age was estimated. Because of the imprecise na-
ture of estimation, age was restricted to four categories
shown in Table 2.
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Table 2: Age categories used in the proxemics
experiment
Category Ages Notes
Children 0 - 11 Subjects predate puberty
Teenagers 11 - 19
Young Adults 19 - 30 Subjects are typically students
Adults > 30

4. METRICS
4.1 Interaction
Observations were included if a subject directly inter-
acted with the operator or the robot. For Mobi Sr. this
could include talking with and waving or gesturing at
each other. Even though subjects could not see the op-
erator on Mobi Jr., waving at or touching the robot was
also considered direct interaction. Observations were also
included if another person interacted directly with the
robot while the subject stood in front of the robot and
faced it in a way that the subject too could interact with
it, either through conversation or gesturing.

4.2 Crowdedness
Crowdedness was quantified with Hall’s four spheres of
personal distance in mind. It is determined as the biggest
sphere in which the subject may choose to stand while
still being able to interact with the robot. The actual dis-
tance the subject chooses can be classified at most as this
sphere, or a smaller one. This is a per-subject classifica-
tion which means that subjects in the same photograph
may be assigned to different crowdedness categories.

Interaction is blocked if a person obscures the view be-
tween subject and robot. In this case, the interaction is
not counted and no crowdedness category is assigned. It
is possible for several people to directly interact with the
robot if they stand next to each other. In this case the
interaction would cease to be direct for one subject if the
subject would move away, so to maintain the same type
of interaction, the subject can at most be in the sphere
he or she is already in. In that case the subject’s distance
directly determines the crowdedness category.

If a subject already interacts indirectly because another
person stands closer without blocking the subject’s in-
teraction, then the interaction is counted and the crowd-
edness category is also assigned to the actually occupied
sphere.

4.3 Measured Distance
The exact measured distance is usually nose-to-nose dis-
tances [1, 9, 3]. However, since in the current experiment
one interaction partner lacks a nose, another measure had
to be devised. Moreover, given the utilized measurement
methods, accurate measurements could only be made for
distances on a given plane, more specifically the floor.
For these reasons, the point where the subject stood was
defined as the point on the floor directly under the cen-
tre of the subject’s torso. This point is a fair indication
(though not an average) of the position of either foot
and also takes leaning forward or backward into account.
The measured distance was from this point to the near-
est point on the robot’s shell. For the robots, no central
point was defined because their shells created a perime-

Figure 3: Parallel lines in perspective with a high-
lighted trapezoid constructed from a random pair
of horizontal lines and the pictured perspective
lines.

ter that could not be crossed, thereby defining a suitable
minimum distance. Human beings on the other hand can
stand over smaller objects, which can be expressed in the
chosen scheme. In addition, neither robot could lean, so
no corrections would have to be applied to the perimeter.

Note that in this scheme the measured distance is greater
than 0 if the subject’s feet are physically touching the
robot’s shell. A measured distance of 0 means that the
subject has placed one foot on either side of the robot’s
base and is standing over it, which was theoretically
possible with both robots, but only feasible with Mobi
Jr. This measuring scheme gives measurements that are
comparable to nose-to-nose distance for the Mobi robots.
The contribution to the distance for a person standing
upright will typically be almost a foot’s length too long,
but the robots contribution will be too short because
their heads (the round head containing the camera for
Mobi Jr., and the monitor for Mobi Sr.) are receded
with respect to the base, and so would have given bigger
measurements if measured from where their noses might
have been if they had them.

4.4 Visual Measurement
Digital photographs were used to determine the distance
to the robot chosen by the subject, subject height and
the distance between the robot and the nearest person
relevant to determine the crowdedness category. All pho-
tographs pictured the entire robot and the entire subject.
If possible, the photograph was taken from a position
perpendicular to the line between subject and robot.

In photographs where the subject and the robot were in a
plane parallel to the camera’s focal plane, perspective dis-
tortion was not an issue and distance measurement was
very similar to the method used in [3]. Since all the mea-
surements from the robot were known, a ratio between
pixels and centimeters could easily be established. This
ratio then related pictured lengths to actual lengths, with
which subject distance and height could be measured. At
the resolution the photographs were taken, robot height
measurements ranged from about 600 to 2700 pixels,
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Figure 4: The reference object and the subject in
a photograph.

but would typically be around 1600 pixels, giving sub-
centimeter precision for size measurements and distance
measurements without a perspective element.

Even though no markings were applied, the floors in the
former factory halls had enough features to find a pair
of parallel lines. Another pair could be freely chosen in
the picture out of any pair of perfectly horizontal lines,
since these are always projected parallel to the camera’s
focal plane and thus to each other2. The two pairs will
enclose a trapezoid in perspective projection (Figure 3).
The ratio between the length of the top and bottom of
the trapezoid, Pr2 and Pr1 respectively (Figure 4) pro-
vides the amount of decrease in size due to perspective
distortion over a distance Dr (Figure 5) whose projected
size is given by the height of the trapezoid Hr. This ra-
tio may also be viewed as a scale factor, giving the size
of objects projected on the top line Pr2 in relation to
objects projected on the bottom line Pr1 or vice versa,
provided that they reside on the same plane, such as the
floor. Using the parallel lines that follow the reference
plain (the floor), such a scale ratio can be calculated for
any given height, for instance Hs, in the photograph by
choosing another horizontal line Ps to form the top of
the trapezoid. In this way, sizes of objects on the floor
can be related to one another. By relating a position
to that of the robot with known dimensions, sizes such
as subject height can now be measured across the entire
photograph.

To obtain the distance between any two points on a plane,
a known reference distance Dr is needed. This reference
distance serves to quantify perspective distortion and to
relate projections with a depth component to actual size.
This distance would need to be perpendicular to the fo-
cal plane. If the reference object is not aligned in such
a manner, then a bounding trapezoid (projection of a
rectangle) can be constructed with known measurements
that is aligned in this way using the image centre and
Pythagoras’ theorem. Let us assume furthermore that

2Zero roll is assumed. If any roll is determined then ei-
ther the chosen lines should not be horizontal but instead
follow the roll angle, or the picture should be turned up-
right first.

 

Reference object 

Subject 

Dr 

Ds 

w 

Dro 

Camera 

Figure 5: The reference object and the subject in
the world.

the optical axis is parallel to the floor. Now take the dis-
tance Dr0 from the camera to the reference object. Using
the object’s known width w, the projection of this width
on the picture plane Pr1 and the focal distance f (the
distance between the focal point and the picture plane),
we could directly compute the depth distance:

Dr0 =
w

Pr1
f (1)

A depth distance between two points in the photograph
can be expressed as a difference between two absolute
distances, e.g.:

Dr =
w

Pr2
f − w

Pr1
f (2)

When expressed as a ratio of distances, the focal distance
f and reference measure w are eliminated:

Dr

Ds
=

w
Pr2

f − w
Pr1

f
w
Ps

f − w
Pr1

f
=

1
Pr2

− 1
Pr1

1
Ps
− 1

Pr1

=

Pr1−Pr2
Pr2Pr1
Pr1−Ps
PsPr1

=
PsPr1(Pr1 − Pr2)

Pr2Pr1(Pr1 − Ps)
=

PsPr1 − Pr2Ps

Pr2Pr1 − Pr2Ps
(3)

Where Ds is the distance between the front of the refer-
ence object and any other desired point where for exam-
ple the subject might be found. If the assumption that
the optical axis were parallel to the floor was violated,
there would be an error in the computation of Dr. But
there would be a proportional error in the calculation
of Ds. Because these errors are proportional, the ratio
between the two depths is still correct. Furthermore,
because we use this correct ratio and our knowledge of
the reference distance Dr, the computation for Ds is cor-
rected. Because Ps is computed from Pr1, Pr2 and the
height differences Hr and Hs (see Figure 4), we can even
cut short calculating Ps and Dr, and simplify to the fol-
lowing form:
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Figure 6: Observation counts per distance range
in centimeters. Bin sizes increase logarithmically.

Dr

Ds
= (

Hr

Hs
− 1)

Pr1

Pr2
+ 1 (4)

Ds will only provide a depth measurement though, we
can combine this with a ’parallel plane’ measurement to
obtain a component perpendicular to the focal plane, and
a component parallel to it. We can then use Pythago-
ras’ theorem to determine the distance between any two
points on the floor. Reference depth measurements (Hr)
in the current experiment ranged roughly from 60 pixels
to 450 pixels to capture a length of typically around 55
cm, giving almost centimeter precision or better.

5. RESULTS
140 Observations of 106 people were collected during a
three day period. A Shapiro-Wilk test revealed that the
data was not normally distributed. Inspection of the data
suggested a logarithmic-normal distribution, which was
confirmed by a second Shapiro-Wilk test on the logarith-
mically transformed data. All further tests were done on
the transformed data. Out of the 140 observations one
outlier was removed that was more than five standard
deviations from the mean. The resulting transformed
dataset had a mean of 3.87 and a standard deviation of
0.74. Subtracting or adding one standard deviation from
the mean and transforming back to centimeters gives a
68.3% confidence distance interval of 23 to 100 cm with
a mean of 48 cm (Table 3, Figure 6).

The natural logarithm of the chosen distance was ana-
lyzed using an analysis of variance with a 2× 2× 4× 4,
Robot type × Gender × Environment × Age group, un-
balanced fractional factorial design. Since there were sig-
nificant effects for Age group × Robot type [F (3, 124) =
6.75, p < .0005] and Age group × Gender [F (3, 124) =
2.67, p = .05], additional analyses were conducted per
age group using a 2 × 2 × 4 design. In no case did the
environment reach significance. For children, robot type
was significant [F (1, 41) = 12.12, p = .001]. As can be
seen in Table3, the mean distance chosen by children
was 26.8 cm for the small robot and 70.4 cm for the
big robot. The Gender was a significant factor for teens
[F (1, 41) = 5.00, p = .03] and marginally significant for
adults [F (1, 7) = 5.18, p = .057]. The difference in chosen
distance between male and female was remarkely large
for Adults (93.5 versus 232.9 cm), but this difference was

 

0%

50%

100%

Child Teenager Young Adult Adult

Jr Sr

Figure 7: Observed interaction frequencies rela-
tive to robot type.

based on a few observations. For the Young Adults nei-
ther Robot type nor Gender were not significant factors
in the chosen distance.

To test if subject height had any influence, the data set
was split to age, but the age groups young adult and adult
were pooled, since children and teens still grow and as
such subject height is not an independent factor over all
age groups. Since subject height would only be meaning-
ful relative to robot height, separate tests were performed
for Mobi Jr. and Sr. The main effect and the interaction
with the environment were tested. For neither robot did
subject height reach significance [F (1, 5) = 2.68, p = .15
for Mobi Jr.; F (1, 38) = .002, p = .96 for Mobi Sr.], nor
did the interaction with environment [F (1, 4) = 5.49, p =
.08 for Mobi Jr.; F (1, 35) = 2.14, p = .11 for Mobi Sr.].

Table 3 shows the mean distance in centimeters for the
significant groups. Significant groups are bold and un-
derlined. Since means and standard deviations were com-
puted under logarithmic transformation, the distances
these standard deviations represent are not equal in both
directions. Therefore, the converted distances from one
standard deviation below to one standard deviation above
the mean centimeters are shown in brackets, providing a
68.3

Figure 7 shows the relative number of observations with
each robot per age group. Since these observations are
random in nature and not drawn from any distribution,
no tests for significance can be performed. Children and
teenagers are seen with Mobi Jr. respectively 3.5 and
1.2 times more often than with Mobi Sr. Young adults
and adults are seen with Mobi Sr. respectively 7 and 2.8
times more often than with Mobi Jr.

6. DISCUSSION
All distances found in the present work except one sug-
gest that the appropriate interaction distance for human-
robot interaction lies within the personal zone of human
interaction. The single divergent distance, which lies in
the far phase or the social zone, is based on four ob-
servations, all of which show women watching the robot
instead of talking to it. While this may be the preferred
type of interaction for this group, the small number of
observations is not sufficient to support this conclusion.
Given the fact that this is the only incongruous result,
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Table 3: Mean chosen distance in centimeters between subject and robot in different contexts. The
68.3% confidence interval (2 standard deviations) is shown in brackets. Significant results are underlined
and bold.

Child Teenager Young Adult Adult All Ages
Male 28.7 39.9 57.1 93.5 42.5

<15.5,53.0> <23.7,67.0> <30.5,107.0> <44.8,195.2> <20.6,88.0>

Female 33.3 60.3 49.0 232.9 53.6
<14.7,75.8> <33.2,109.4> <33.7,71.4> <176.6,307.1> <25.5,112.7>

Small Robot 26.8 52.0 42.5 200.1 38.4
<14.4,49.7> <29.5,95.0> <42.5,42.5> <117.1,342.4> <16.9,87.2>

Big Robot 70.4 55.1 53.8 91.4 58.4
<36.7,135.1> <30.0,101.2> <31.4,92.2> <43.5,192.0> <31.9,106.7>

All Groups 30.4 53.8 47.6 126.7 47.9
<15.1,61.1> <29.5,98.0> <20.3,111.6> <59.6,269.6> <22.8,100.5>

there is reason to doubt the validity of this finding.

The personal distance found in the groups other than
adult women is suitable for the type of interaction in this
experiment among humans, and suggests acceptance of
the robots as an agent that represents a social being. It
should be noted however that in the case of Mobi Jr. it
was apparent through conversations with it that people,
especially children, did not always know it was controlled
by a human being. In this case they could have accepted
it as an autonomous agent that should be treated with
similar social rules.

In the current work, the shape of the robot was only of
influence on children. While this was in the line of ex-
pectation, since Mobi Jr. was specifically designed to
work well with children, it was surprising to learn that
other age groups made no distinction between the robots
in choosing an interaction distance. There were how-
ever substantially more observations of children interact-
ing with Mobi Jr. compared to Mobi Sr., and of young
adults and adults interacting with Mobi Sr., indicating a
preference of the respective age groups for those robots.
While robots can be created with a myriad of possible ap-
pearances, it appears that the look of the robot is more
important in appealing to a certain target audience than
it is in influencing the preferred interaction distance. In
this way, the appearance might be modeled with prac-
tical considerations in mind, such as the placement of
sensors and visual or auditory outputs, or it might be
made to resemble the target audience members, leading
to a smaller cultural difference.

Instead of simply applying a set of learned norms to the
robots, it is possible that people actually used similar cri-
teria of sensory input that are mentioned in Section 1.2.
In this context it could mean that the distance is cho-
sen to facilitate communication. Practically this would
mean standing close enough to hear the operator’s voice
through the speakers and to have the subject’s own voice
be picked up by the microphone which can be determined
by the operator’s communicated difficulty of hearing the
subject. Mobi Sr. was shown at another exhibition where
there was not enough light to see interaction partners
through the webcam. A desk lamp was attached on top of
its head, which influenced people’s decisions on where to
stand since people tended to step into the light. Perhaps
audio manipulations such as loudness or stereo placement
will show a similar influence on communication distance.

The distribution of chosen distances has been shown to
be logarithmically normal. Although not necessarily log-
arithmic, a positively skewed distribution has been pre-
dicted by Sundstrom & Altman [7], and has been found
in another human-robot interaction study by Walters et
al. [8]. This means that in an approach starting from
afar, comfort builds up slowly to an optimum and then
drops off rapidly, possibly due to the undesirability of
physical contact. Practically this means that if in doubt,
it is better for a robot to stay back a bit too far rather
than coming a bit too close, since overshooting the opti-
mal distance will cause a much greater discomfort.

The average interaction distance of 47.9 cm is close to the
verbal interaction distance of 62 cm reported by Koay
et al. Note that our value for young male adults is even
closer to the verbal interaction distance reported by Koay
et al. [4]. However, the variance observed in this study is
much larger than the variance previously reported: the
differences in measured distances observed for human-
robot proxemics studies is typically of the order of less
than 20 cm. This is partly due to the effect of children
interacting at close distance with the small robot, and
female adults observing the robots from a far distance
(note that these are independent observations, and is not
explained by for example mothers watching their children
interact). Yet, even for the Teenager and Young Adult
groups, the variance was larger than previously reported,
which is an indication of the variety of the audience at-
tracted to this public event.

Surprisingly, the crowdedness of the environment is not
significant in any of the groups. Having a surplus amount
of space available to choose a position and communica-
tion distance was not expected to influence the choice,
but given severe constraints people would still rather
stand even closer to other people, than give up any space
between themselves and the robot. There may be an al-
ternative explanation however. Since the Mobi robots
were a visitor attraction, people tended to crowd around
them. This behavior led to spatial constraints for the
people communicating with the robots at the front of the
crowd. However, these subjects could have taken their
preferred distance before the crowd limited them since
people would gather behind or beside the subject not to
disrupt his or her communication with the robot. More-
over, given the amount of space in the factory halls, there
would typically be enough space around the crowd to pro-
vide everyone in it with at least personal distance. In-
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vestigating communication distance between humans and
robots in truly crowded environments would be difficult
because of navigational problems. Perhaps human-robot
distance preferences in such crowded conditions can be
determined in an elevator setting, where there is no need
for the robot to navigate through a crowd if it is the last
one to exit and the first one to enter the elevator.

Pacchierotti et al. [6] describe a learning effect where
comfortable distance becomes closer depending on whether
a subject interacted with their robot in a previous trial.
This could simply be caused by familiarity, but it might
also be caused by a higher predictability of the robot’s
behavior which leads to a better estimate of whether or
not the robot might be dangerous in any way. Apart
from removing the need of keeping a cautionary distance,
increased predictability and trust might also reduce the
preferred interaction distance.

Additionally, a policy should be decided upon for dealing
with learning effects. People may want to change their
interaction with a certain robot or change their interac-
tion distance as trust and familiarity is increased. To
disregard initial cautious reactions on the human part
would cause an unpleasant acquainting. On the other
hand, to stay on the safe side and display solely more
reserved manners might become a nuisance to frequent
users. Ideally, robots should develop a social recognition
system that determines whether or not any given person
has been encountered before and what his or her atti-
tude is towards the robot. However, such a system would
normally not be available for all but the most advanced
robots since the implementation of such a system is a far
greater challenge than social distance maintenance.

7. CONCLUSIONS
It has been shown that age group is a significant factor in
determining the preferred interaction distance, and fur-
thermore that age group is of influence on what other
factors play a role. Although the current work supports
the notion that robot shape contributes mostly to ap-
peal to a certain audience, it remains an open question if
the shorter distances found in children’s interaction with
Mobi Jr. had practical grounds or were because of iden-
tification leading to a smaller cultural difference. Also,
it remains unclear why there is a difference between the
distance chosen by men and women in some age groups,
whether or not this is related to cultural difference, and
if the greater distance suggested for adult women is jus-
tified.

The influence of crowdedness and available space was not
found to be significant in this work. Since the found pre-
ferred interaction distances were comparable to human
personal and social space even when the environment
provided enough capacity to keep public distance, there
is no reason to doubt that any constraints that still pro-
vided the possibility to keep these distances were of any
influence. In the case of intimate distance constraints
however, the preferred distance would typically not be
available without harming the preferred distance kept to
other individuals. But in the current experiment, this
space was available and the distance constraints were cre-
ated only locally by crowding around the robot. There-
fore, a further experiment is needed to establish the in-

fluence of severe spatial constraints in an environment
that truly limits subjects to intimate distance.
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